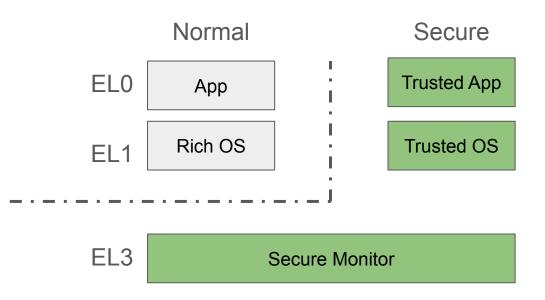
Virtualizing Arm TrustZone on KVM

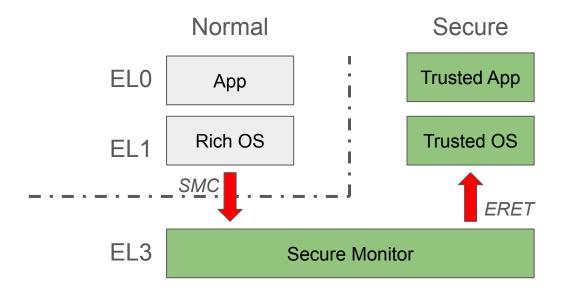
Chun-Yen Lin, Shih-Wei Li

Outline


- Introduction to Arm TrustZone and OP-TEE
- Motivation & Our Goals
- Design
- Evaluation
- Future Plan

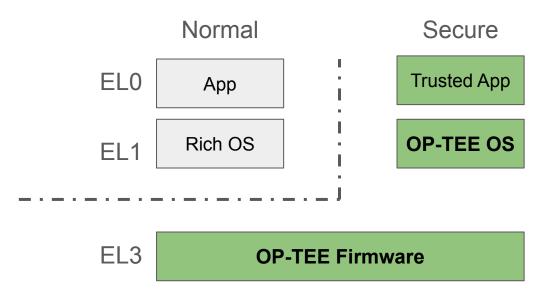
Arm TrustZone

• Isolation between worlds



Arm TrustZone

• CPU can switch to secure worlds by making a SMC (secure monitor call)



Arm TrustZone

• TrustZone is typically paired with OP-TEE as its secure OS

OP-TEE

- Trusted Execution Environment (TEE) based on Arm TrustZone
- Developers can implement Trusted Applications (TAs) in the secure world
- **OP-TEE firmware handles the** SMC **at EL3**

Motivation

- Currently QEMU/TCG support the emulation of TrustZone, but KVM doesn't
 - We can virtualize TrustZone CPU features at KVM and reuse the existing QEMU emulation on TrustZone hardware to create a virtual TrustZone environment

Our Goals

- Extend KVM to expose a virtual TrustZone to VMs
- Set up an OP-TEE VM on our virtualized TrustZone environment
 - To demonstrate the ability of our virtualization framework

Design - Sensitive Instructions

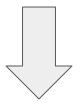
- ERET and MSR/MRS with EL3 system registers
 - May cause undefined behavior
- SMC
 - Should be executed by EL1 then be trapped to EL3
- HLT (Semihosting call in Arm64)
 - May cause the CPU to stop from executing

Design - Sensitive Instructions Handling

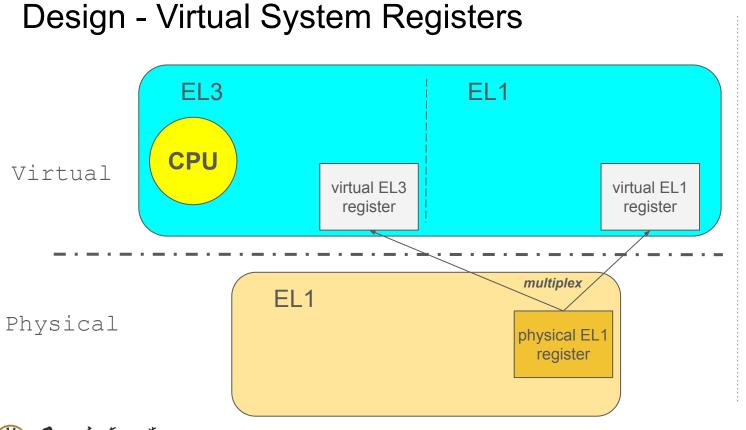
- Trap-and-emulate to handle sensitive instructions
 - Not all sensitive instructions would be trapped
 - We adapted a para-virtualization method to replace sensitive instructions with HVC
 - ERET and HLT

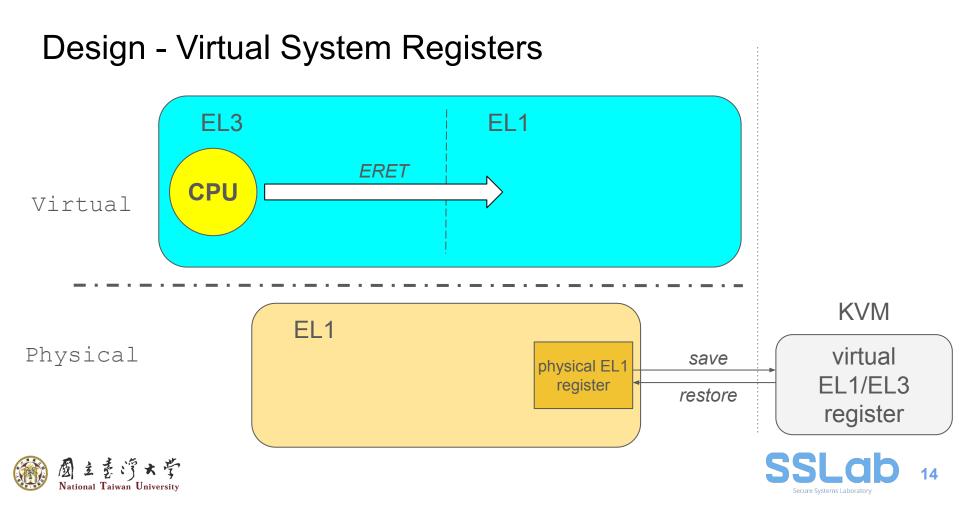
Design - Virtual System Registers

• Most of the EL3 system registers are also banked at EL1


EL3 Register	EL1 Equivalent Register	
SPSR_EL3	SPSR_EL1	
VBAR_EL3	VBAR_EL1	
$SCTLR_EL3$	$SCTLR_EL1$	
$\mathrm{ELR}_\mathrm{EL3}$	$\mathrm{ELR}_{\mathrm{-}\mathrm{EL1}}$	
SP_EL3	SP_EL1	

Design - Virtual System Registers


MSR SPSR_EL3, x0


MSR SPSR_EL1, x0

Design - Virtual System Registers

- Some register are only existing in EL3
 - SCR_EL3, MDCR_EL3
 - We store these registers' value at KVM, guest VM can access them through HVC

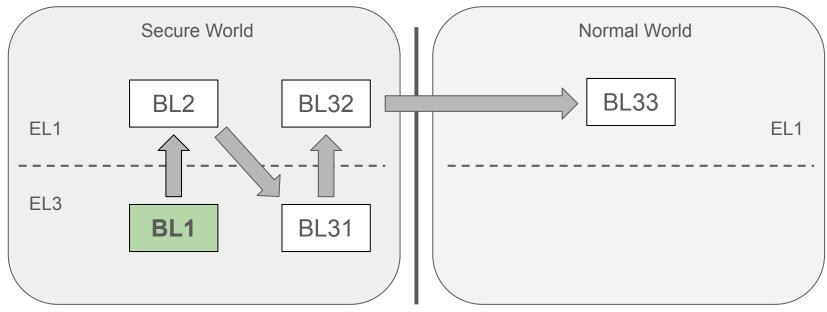
SMC

- 1. Save current PC to virtual ELR_EL3
- 2. Save current process state to virtual SPSR_EL3
- 3. Set PC to virtual VBAR_EL3 with corresponding offset
- 4. Context switch, save current EL1 registers and restore virtual EL3 register on hardware EL1

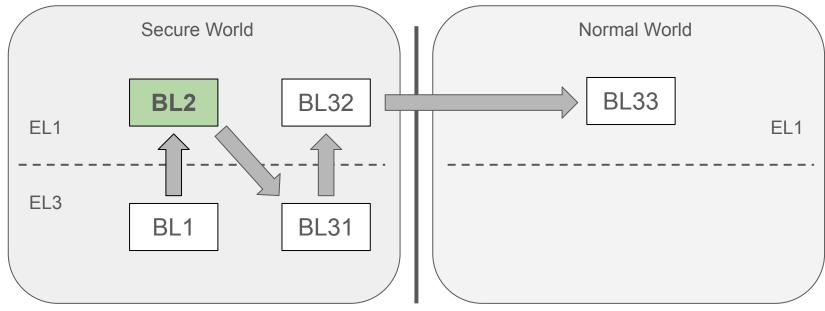
- 1. Restore PC from virtual ELR_EL3
- 2. Restore process state from virtual SPSR_EL3
- 3. Context switch, save current EL3 registers and restore virtual EL1 register to hardware EL1

QEMU

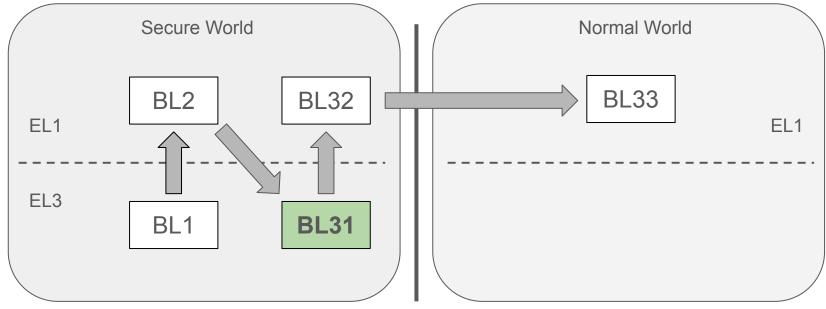
- Add a virtual secure memory region to emulate secure memory of TrustZone
 - Map secure UART and GPIO onto it
- Handle semihosting call
 - Replace HLT with HVC
 - Return to QEMU from KVM
 - Handle semihosting call at QEMU


Paravirtualization of OP-TEE

- Most modification is about the **ARM Trusted Firmware**
 - The firmware of OP-TEE
 - Handles the early boot stages, sets up critical security features for OP-TEE, loads the OP-TEE OS into the Secure World
 - Handles the transition between the Secure world and the Normal World
 - Consists of several bootloaders


Initialize the early hardware components and security features

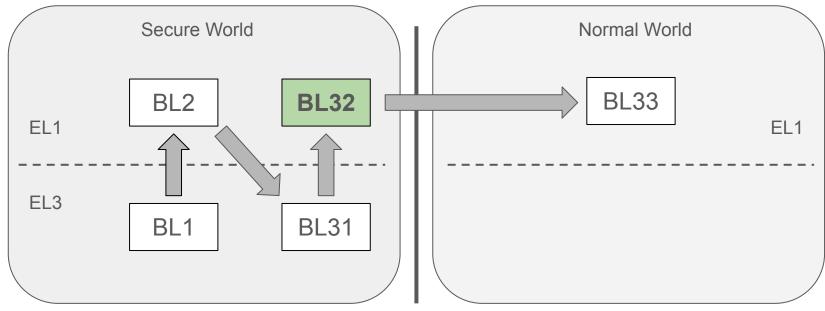
Load and verify further boot loaders and system software



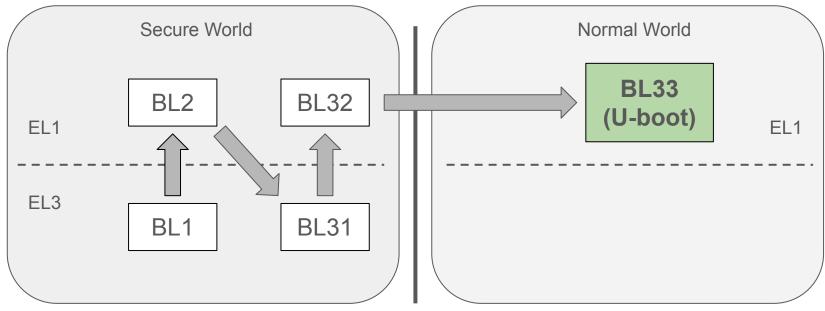
主卖汽

National Taiwan University

囱


EL3 Runtime Firmware, the core part of TF-A that handles SMC and do secure world and normal world context switching

Load and initialize the OP-TEE OS



Bootloader 33 (U-boot)

Load and initialize the normal world OS (Linux)

Performance Evaluation - Setup

• Hardware

- AVA Developer Platform
 - Arm Neoverse N1
 - 32 cores and 32GB RAM
- Software
 - KVM Linux 5.15
 - QEMU v8.0.0
 - Guest VM
 - OP-TEE 4.0.0
 - Trusted Firmware-a 2.9
 - Linux 6.2

Performance Evaluation - applications

Application	Description	
acipher	Generates an RSA key pair and encrypts a supplied string	
aes	Runs an AES encryption and decryption	
hello_world	A simple Trusted Application to answer a hello command	
hotp	Generates a HMAC based One Time Password	
random	Generates a random UUID	
secure_storage	Reads/writes raw data into the OP-TEE secure storage	
plugins	Interacts with Linux syslog service as a plugin	

Performance Evaluation - Results

Exec. Time (ms)	TCG	KVM
acipher	365	30
aes	266	32
hello_world	221	23
hotp	279	30
random	211	22
secure_storage	561	51
plugins	10327	10093

Future Plan

- Extend our approach to KVM-based confidential VM (e.g. pKVM or Arm CCA)
- Extend QEMU to virtualize secure IO devices
 - TrustZone Address Space Controller (TZASC) can define memory regions and prevent unauthorized access

Thanks! Questions?

