Virtio and the Chamber of Secrets

Interface design for Confidential Computing
Systems
Michael S. Tsirkin

Distinguished Engineer
Chair of Virtio TC

Fall 2024 Unicorns by

stable
diffusion

OASIS 9 '



Agenda

 How are Confidential Computing and Virtio related

e Untrusted Virtio
- Status and Issues

e Trusted Virtio
- Status and Issues

* Migration
* Summary




Confidential Computing / VMs

Reduce VM'’s trust in the hypervisor.

Can protect or migitate

No mitigation

1)Code execution
2)Rollback attacks
3)Information leaks
4)(some) physical access

DoS

* Virtio is used heavily

<& RedHat

In fact, DoS is the main mitigation measure

Requirement: avoid introducing more trust in HV




Standard Virtio device models

Software Hardware Mixed
(virtio, vhost, vhost-user) (Passthrough with VFIO) (vdpa)

device is accessible to HV
e access directly

 trap and emulate
Should not be trusted

Device driver MUST protect the guest VM.




Protecting guest: DMA

« SWIOTLB (lookaside buffer):
limited memory accessible to untrusted devices

* Driver (through DMA API) copies data to/from guest memory

e Protects against TOCTOU
- (basic) support since Virtio 1.0
— Allocation/copy overhead




Input validation

* Constant vigilance required

 Virtio drivers fuzzed
- Net
- Block
- Console
- 9P
- Vsock
* Transient execution: Spectre v1?

<& RedHat



--- a/drivers/char/virtio_console.c
+++ b/drivers/char/virtio_console.c
@@ -2007,25 +2007,27 @@ static int virtcons_probe(struct virtio_device *vdev)
multiport = true;
}

err = init_vqs(portdev);

if (err < 0) {
dev_err(&vdev->dev, "Error %d initializing vqs\n", err);
goto free_chrdev;

}

spin_lock_init (&portdev->ports_lock);
INIT_LIST_HEAD(&portdev->ports);
INIT_LIST_HEAD(&portdev->list);

I n Itl a.I Izatl O n virtio_device_ready(portdev->vdev);
INIT_WORK(&portdev->config_work, &config_work_handler);
an C ean u p INIT_WORK(&portdev->control_work, &control_work_ handler);

if (multiport) {

bu S spin_lock_init(&portdev->c_1ivq_lock);
spin_lock_init(&portdev->c_ovq_lock);

err = fill _queue(portdev->c_ivq, &portdev->c_ivq_lock);
if (err < 0) {
dev_err(&vdev->dev,




Stack/application level protection

TLS

Dmcrypt

Dmintegrity
Rollback protection?




More devices

Virtio-input (since we have console)
Virtio-scsi (since we have blk)
Virtio-snd (why not?)

Virtio-rng (needed?)




Possible?

Virtio-fs ?

Virtio-crypto ?

Virtio-pmem?

Virtio-balloon ? Could be useful.

10



Audit/Fuzzing challenges

+

__lomem
+ dma_addr _t
dma_sync

Note: unlike __user

11



Filtering

Device filter
— Guest decides which drivers to allow
- If not allowed, probe does not run

Features
— Virtio has a lot of flexibility, reducing attack surface is desired
— Limit the supported features, configurations?

12



restore trust In devices

* Bring device into TCB
e MUST NOT be accessible to HV
e For PCI devices - TDISP

13



TDISP In action

 TEE Device Interface Security Protocol
 End to end encryption of guest to device communication

* Designed to protect against many types of software and
physical attacks

14



Locking

 HV is still responsible for device discovery, some setup (e.qg.
scan/sriov) and allocation to guests

* To assigned device to guest, it has to be locked
 Can not be changed by HV while locked

15



Measurement report

DEVICE_INTERFACE_REPORT
Signed by device

E.g. MMIO_RANGES

Can include device specific info

16



TDISP limitations

3 main ways to access a PCI device:

IO R/W Memory R/W

Config R/W

Only memory encrypted

HV can trap and emulate IO/Config

Insecure

17



PCI Config uses In Virtio

* RO - helps driver locate registers
- Common cfg / device cfg / vq notification / ISR / shared memory

 RW — gateway for 32-bit firmware if memory is > 4G
- Slow

18



Using measurement for RO config

Arguably a bug that the TDISP spec does not include this
Add ranges or RO registers to the report

Alternatively, add to device specific area in the report

We then need to define format for this area — worth it?

19



Using lock to protect config

* Disable RW registers upon lock
e Give up on 32 bit / high memory support

20



Avoid PCI Config

Relocate to a known offset in PClI Memory

Possibly verbatim or with consmetic changes, to minimize driver
work

Compatiblity: detect TDISP? Unattractive
Or, allocate new device IDs

21




VDPA

 VDPA: a mixed device
- Data path — passthrough
- Control path - emulated

* Popular due to hardware simplicity

* What does control path include:
- Programming queues (size/address)
- Reset
- Features, etc

<& RedHat

22



VDPA vs TDISP

* Does not seem practical

* HV can redirect DMA arbitrarily

* Confuse guest by lying about features
* Or device config

* Include in DEVICE_INTERFACE_REPORT / DEVICE_SPECIFIC
INFO?

* Practical?
 VDPA can not tweak. Negates benefits?

<& RedHat

23



VFIO/virtio

* VDPA-like trick to implement a transitional device over a modern
device

* VIRTIO ADMIN CMD _ LEGACY:
- Exposes direct access to VF's IO memory through PF

* MUST be disabled upon interface lock

24




VM Migration

* Moving state between devices: SRC, DST
By the HV
* But how do we prevent HV attacks?

25



Migration: untrusted Virtio

e HV saves state from SRC and restore on DST

e can corrupt the state
- Dbut then it can, anyway

e Guest must validate at all times

26



Memory tracking: untrusted Virtio

Device can change memory as it is migrated
HV can track changes (e.g. shadow VQ) and re-copy

Can corrupt memory
— But it is public, so it can anyway

Guest must copy and validate at all times

27



Migration: TDISP Virtio

Can not trust HV

On SRC device saves state in encrypted and signed form
On DST device checks the signature and restores the state
A bit vague

28



Memory tracking: TDISP Virtio

Device tracks memory changes

Signals the HV to retransmit

Leaks which memory pages are accessed
Rollback protection?

29



Summary

 Many improvements possible
* Non-trusted Virtio - driver work
* Trusted Virtio — spec work

30



Questions? New Virtio MLs

e Virtio-comment@lists.linux.dev - driver/device devel
* Virtio-dev@lists.linux.dev - spec development

e Courtesy of Linux Foundation

31


mailto:Virtio-comment@lists.linux.dev
mailto:Virtio-dev@lists.linux.dev

