Practical and efficient
out-of-process storage
backends

Kevin Wolf <kwolf@redhat . com>
KVM Forum 2024

Background

2

Background

Why out-of-process backends?
Short recap of the KVM Forum 2022 talk

» Isolation for improved security

» Separation of concerns (VMs vs. storage)

» Offline block jobs

» Sharing a backing chain between multiple VMs
» Sharing a CPU for polling

» Sharing a single disk between multiple VMs

& RedHat

Background

KubeVirt and storage backends

Our specific motivation currently

KubeVirt considers storage Someone Else's Problem

>

>

CSl plugins provide access to storage on Kubernetes
Idea: HW vendor provides a CSl driver for storage operations
Practice: The CSl driver often doesn't fulfill the requirements

QEMU already implements the functionality in software, so we
should just expose it (to VMs and normal containers!)

& RedHat

What are our options?

5

What are our options?

NBD

The obvious and familiar solution

l Guest l

Y

» All building blocks have

existed for along time
| QEMU | QsD))
» Asingle solution that
covers the network, too
(migration)

» Can be attached as a

Y host block device
/dev/nbdO 8

& RedHat

What are our options?

Problems with NBD

It would have been too easy

I Guest l Random reads (iops)

300k

\ §=||
I QEMU I QSD 200k |

100k +

Ok -
4k null 4k disk 64k null 64k disk
/dev/nbdO D@ in-process [INBD ‘

& RedHat

What are our options?

Problems with NBD

It would have been too easy

» Copying everything through a socket
» Both QEMU and an external process in the |/O path

» How to access it?

» Asocket is not really suitable for Kubernetes CSI

» Kernel NBD client for block devices requires privileges and doesn't support
all features

& RedHat

What are our options?

FUSE

Maybe the least discussed export type

» Only one copy
| Guest l » Could maybe achieve

zero-copy for common
A4 §=|| cases with splicing

| QEMU | QSD » Still both QEMU and

QSD in the I/O path

» Exportshowsupasa
_' 8 regular file

» Works as a regular user

& RedHat

What are our options?

FUSE performance

Better than NBD anyway

Random reads (iops) Random reads (iops)
300k
150k +
200k + 100K |
100k + 50k |
Ok - \ H : H Ok ! ‘ ID ﬂ
4k null 64k null 4k disk 64k disk

| B8 In-process I INBD [1 FUSE master [l 0 fuse-direct |

& RedHat

What are our options?

vhost-user-blk

The polar opposite of NBD
Guest
1 » Zero copy: Guest RAM is
shared memory

o= QsDh QEMU notinvolvedin

: : the I/O path

No privileges required
control msg

\4

v

& RedHat

What are our options?

vhost-user-blk performance

Should be the same as in-process in theory

Random reads (iops) Random reads (iops)
400kt [[]
300k | 150k 1
200k | 100k 1
100k | ﬂ S0k H
Ok - \ ‘ ’_‘ Ok - ‘ ID.HH
4k null 64k null 4k disk 64k disk

| B8 In-process [0 vhost-user-blk [1 NBD [U fuse-direct |

& RedHat

What are our options?

Problems with vhost-user-blk

It comes at a cost

» Requires a socket, no way to use a block device or regular file
» Requires the guest RAM to be shared memory
» Conflicts with features like KSM, memory ballooning, etc.
» Works optimally only if the guest uses virtio-blk devices
» libblkio enables other devices, but then QEMU has to be in the |I/O path
again

» Quite different to manage compared to normal block backends
and management tools don't support it yet

& RedHat

What are our options?

vdpa-blk

The best of both worlds (but not at the same time)

Guest l Guest l

Y

QEMU === -[QSD] [QEMU] QSD
1
1
1

1
1
1
: =l
T ¥ ' -
[vdpa bus] [/dev/vda]—»[vdpa bus] -
With vhost-vdpa driver With virtio-vdpa driver

& RedHat

What are our options?

vdpa-blk characteristics

The best of both worlds (but not at the same time)

» One export type to cover high performance and block devices
» vhost-vdpa works much like vhost-user-blk

» virtio-vdpa is similar to the NBD kernel client or FUSE

» Both modes requires privileges

» Kernel support is required and not enabled in all distros yet

& RedHat

What are our o

ptions?

What if we could switch?
This may or may not be realistic...
Imagine /dev/vda supported an ioctl INTO_VHOST:
» The block device becomes inactive (e.g. returns -EBUSY)
» The vdpa device is transferred to vhost-vdpa

» Theioctl returns a file descriptor for the vhost chardev

Then we would have a block device for generic use cases, and could
still use vhost-vdpa where performance would improve

& RedHat

What are our options?

vdpa-blk performance

Not only vhost-user-blk can do better than baseline!

Random reads (iops) Random reads (iops)
] o 200kt [

400k + [150k |
100k +

200k +

H 50k | H
Ok - \ ’_‘ : |_| Ok - : IDHHH
4k null 64k null 4k disk 64k disk

| BB In-process [l Il vhost-user-blk [[vhost-vdpa [[virtio-vdpa [l T fuse-direct |

& RedHat

What are our options?

Lifting some vhost restrictions with libblkio

If you want vhost, but still not only virtio-blk

Random reads (iops)

400k +
200k +
ok -4 — - D -
4k null 64k null
. vhost-vdpa virtio-vdpa
[Oblkio (vhost-user) [[blkio (vdpa)

libblkio allows attaching
vhost-vdpa as a normal
QEMU block device

Can use any guest
device

Performance is not
worse than virtio-vdpa

& RedHat

What are our options?

ublk

Back to host block devices

l Guest l L
» |/O pathis similar to

1l virtio-vdpa
| QEMU | QsD » Notimplementedin
QEMU yet
! §=|| » Kernel driverisn't very
[/dev/ublkbO]—[/dev/ublkcO] mature yet

& RedHat

What are our options?

400k +

200k |

Ok

ublk performance

Yes, it's comparing apples and oranges

Random reads (iops)

n

-

Ak null 64k null

300k |

200k |

100k

Ok -

Random reads (iops)

ak disk

|

64k disk

‘ In-process (4 threads) B B ublk* [11 vhost-vdpa [[virtio-vdpa [0 fuse-direct ‘

*using ubdsrv, not a QEMU export (—> one thread per queue)

& RedHat

What are our options?

Conclusion

Can | mix and match?

» For each property we want, there is an export type that has it.
But there is nothing that combines all of them.

» In particular, zero-copy seems important.
But sharing memory and giving access to it is painful.

» If privileges are not a problem, vDPA seems to be a good
all-purpose export, but it still requires a trade-off when choosing
the driver.

21
& RedHat

Canwe do better?

22

Can we do better?

What export to improve?

Where do we see potential for improvement?

» We almost certainly want a "normal" block device or file

» Limitations of shared memory seem hard to overcome

» Bypassing QEMU's block layer makes management very different
> We have no way to remove QEMU from the I/O path then

» (Except maybe something like io_uring passthrough?)

» We can try to reduce overhead on the QSD side

23

& RedHat

Can we do better?

ublk: SQE groups for zero-copy

Payload? Who needs that?

» Userspace often only forwards the payload
» Copy only the request metadata to the userspace daemon

» New io_uring command that the daemon can use to reuse
in-kernel buffer for its own requests to backing storage

» V6 patch series by Ming Lei on io-uring/linux-block mailing lists

& RedHat

Can we do better?

ublk: Cache mappings in the kernel

Why bother with calling into userspace at all?

| Guest | > In common cases,
image formats only
Y
| QEMU |
A

map between offsets
4
[/dev/ublkbO]—[Jdev/ublkcO] 8 ~ Prototype showed

» Why not cut out the
userspace daemon
instead of QEMU?

C) improved iops on file

)

25

& RedHat

Can we do better?

ublk: eBPF for handling requests in the kernel

Avoid userspace even harder

» Instead of just mappings, allow arbitrary logic
» If eBPF code handles the request, no need to involve userspace

» May allow to do additional things without a context switch
(e.g. updating dirty bitmaps)

» Ming Lei wrote some early prototype code

& RedHat

Can we do better?

Random other observations

Other exports can stillimprove, too

» The vhost-user-blk export has a hard-coded queue size of 128.
With vDPA, it's configurable and 256 by default.

» ublk benefits from allowing multiple 1/O threads.
Exports should implement iothread-vg-mapping like virtio-blk.

» Something seems to be wrong with the NBD implementation.
A slower backend should hide its overhead, but it only gets worse.

27

& RedHat

Bonus data

28

Bonus data

400k

200k -

Ok -

Null device (all exports)

4 vCPUs, 4 virtqueues, Tiothread, 16 GB null device

| B

1

neme

4k null

64k null

Om
Om

vhost-vdpa [blkio (vdpa) [l [virtio-vdpa
NBD

FUSE

0o

In-process (4 thr.) ublk* BB In-process [8 vhost-user-blk [0 blkio (vhost-user)

fuse-direct

29

& RedHat

Bonus data

Disk backed (all exports)

4 vCPUs, 4 virtqueues, Tiothread, 16 GB partition on NVMe

300k | | sox | g | ||
200k 20k |
100k | § HH 10k | 4
Ok ; i m Ok ! A i
4k disk 64k disk
In-process (4 thr.) ublk* BB In-process [l 0 vhost-user-blk [0 blkio (vhost-user)
[0 vhost-vdpa [Iblkio (vdpa) !l [l virtio-vdpa FUSE 0o fuse-direct
o NBD

30
& RedHat

Bonus data

File backed (all exports)
4 vCPUs, 4 virtqueues, Tiothread, 16 GB file on XFS+LVM+LUKS

30k |
100k

20k +

50k +
10k +

NN N N NN NN NN
N Y

2
777
777
777
777
777
777
777
777
777
777
777
777
777
777
777
777
777
277
777
777
777
777
777
777
i

Ok - Ok -

4k file 64k file
B8 In-process [0 vhost-user-blk [O blkio (vhost-user) [1 vhost-vdpa [[blkio (vdpa)
[0 virtio-vdpa FUSE Do fuse-direct [0 NBD ublk*

& RedHat

Thank you

Red Hat is the world's leading provider of
enterprise open source software
solutions. Award-winning support,
training, and consulting services make
Red Hat a trusted adviser to the Fortune
500.

m linkedin.com/company/red-hat

E youtube.com/user/RedHatVideos
m facebook.com/redhatinc

twitter.com/RedHat

http://linkedin.com/company/red-hat
http://youtube.com/user/RedHatVideos
http://facebook.com/redhatinc
http://twitter.com/RedHat

	Background
	What are our options?
	Can we do better?
	Bonus data

