
Practical and efficient
out-of-process storage
backends

Kevin Wolf <kwolf@redhat.com>
KVM Forum 2024



Background

Background

2



Background

Why out-of-process backends?
Short recap of the KVM Forum 2022 talk

I Isolation for improved security

I Separation of concerns (VMs vs. storage)

I Offline block jobs

I Sharing a backing chain between multiple VMs

I Sharing a CPU for polling

I Sharing a single disk between multiple VMs

3



Background

KubeVirt and storage backends
Our specific motivation currently

KubeVirt considers storage Someone Else's Problem

I CSI plugins provide access to storage on Kubernetes

I Idea: HW vendor provides a CSI driver for storage operations

I Practice: The CSI driver often doesn't fulfill the requirements

I QEMU already implements the functionality in software, so we
should just expose it (to VMs and normal containers!)

4



What are our options?

What areouroptions?

5



What are our options?

NBD
The obvious and familiar solution

Guest

QEMU QSD

socket

/dev/nbd0

I All building blocks have
existed for a long time

I A single solution that
covers the network, too
(migration)

I Can be attached as a
host block device

6



What are our options?

Problems with NBD
It would have been too easy

Guest

QEMU QSD

socket

/dev/nbd0

🗐

🗐

🗐

4k null 4k disk 64k null64k disk
0k

100k

200k

300k

Random reads (iops)

In-process NBD
7



What are our options?

Problems with NBD
It would have been too easy

I Copying everything through a socket

I Both QEMU and an external process in the I/O path
I How to access it?

I A socket is not really suitable for Kubernetes CSI
I Kernel NBD client for block devices requires privileges and doesn't support

all features

8



What are our options?

FUSE
Maybe the least discussed export type

Guest

QEMU QSD

file

🗐

I Only one copy
I Could maybe achieve

zero-copy for common
cases with splicing

I Still both QEMU and
QSD in the I/O path

I Export shows up as a
regular file

I Works as a regular user

9



What are our options?

FUSE performance
Better than NBD anyway

4k null 64k null
0k

100k

200k

300k

Random reads (iops)

4k disk 64k disk
0k

50k

100k

150k

Random reads (iops)

In-process NBD FUSEmaster fuse-direct
10



What are our options?

vhost-user-blk
The polar opposite of NBD

Guest

QEMU QSD

socket

8

control msg

I Zero copy: Guest RAM is
shared memory

I QEMU not involved in
the I/O path

I No privileges required

11



What are our options?

vhost-user-blk performance
Should be the same as in-process in theory

4k null 64k null
0k

100k

200k

300k

400k

Random reads (iops)

4k disk 64k disk
0k

50k

100k

150k

Random reads (iops)

In-process vhost-user-blk NBD fuse-direct
12



What are our options?

Problems with vhost-user-blk
It comes at a cost

I Requires a socket, no way to use a block device or regular file
I Requires the guest RAM to be shared memory

I Conflicts with features like KSM, memory ballooning, etc.

I Works optimally only if the guest uses virtio-blk devices
I libblkio enables other devices, but then QEMU has to be in the I/O path

again

I Quite different to manage compared to normal block backends
and management tools don't support it yet

13



What are our options?

vdpa-blk
The best of both worlds (but not at the same time)

Guest

QEMU QSD

vdpa bus

8

With vhost-vdpa driver

Guest

QEMU QSD

vdpa bus/dev/vda

🗐

With virtio-vdpa driver

14



What are our options?

vdpa-blk characteristics
The best of both worlds (but not at the same time)

I One export type to cover high performance and block devices

I vhost-vdpa works much like vhost-user-blk

I virtio-vdpa is similar to the NBD kernel client or FUSE

I Both modes requires privileges

I Kernel support is required and not enabled in all distros yet

15



What are our options?

What if we could switch?
This may or may not be realistic...

Imagine /dev/vda supported an ioctl INTO_VHOST:

I The block device becomes inactive (e.g. returns -EBUSY)

I The vdpa device is transferred to vhost-vdpa

I The ioctl returns a file descriptor for the vhost chardev
Then we would have a block device for generic use cases, and could
still use vhost-vdpa where performance would improve

16



What are our options?

vdpa-blk performance
Not only vhost-user-blk can do better than baseline!

4k null 64k null
0k

200k

400k

Random reads (iops)

4k disk 64k disk
0k

50k

100k

150k

200k

Random reads (iops)

In-process vhost-user-blk vhost-vdpa virtio-vdpa fuse-direct
17



What are our options?

Lifting some vhost restrictions with libblkio
If you want vhost, but still not only virtio-blk

4k null 64k null
0k

200k

400k

Random reads (iops)

vhost-vdpa virtio-vdpa
blkio (vhost-user) blkio (vdpa)

I libblkio allows attaching
vhost-vdpa as a normal
QEMU block device

I Can use any guest
device

I Performance is not
worse than virtio-vdpa

18



What are our options?

ublk
Back to host block devices

Guest

QEMU QSD

/dev/ublkc0/dev/ublkb0

🗐

I I/O path is similar to
virtio-vdpa

I Not implemented in
QEMU yet

I Kernel driver isn't very
mature yet

19



What are our options?

ublk performance
Yes, it's comparing apples and oranges

4k null 64k null
0k

200k

400k

Random reads (iops)

4k disk 64k disk
0k

100k

200k

300k

Random reads (iops)

In-process (4 threads) ublk* vhost-vdpa virtio-vdpa fuse-direct

*using ubdsrv, not a QEMU export (→ one thread per queue)
20



What are our options?

Conclusion
Can I mix and match?

I For each property we want, there is an export type that has it.
But there is nothing that combines all of them.

I In particular, zero-copy seems important.
But sharing memory and giving access to it is painful.

I If privileges are not a problem, vDPA seems to be a good
all-purpose export, but it still requires a trade-off when choosing
the driver.

21



Can we do better?

Canwedobetter?

22



Can we do better?

What export to improve?
Where do we see potential for improvement?

I We almost certainly want a "normal" block device or file
I Limitations of shared memory seem hard to overcome
I Bypassing QEMU's block layer makes management very different

I We have no way to remove QEMU from the I/O path then
I (Except maybe something like io_uring passthrough?)

I We can try to reduce overhead on the QSD side

23



Can we do better?

ublk: SQE groups for zero-copy
Payload? Who needs that?

I Userspace often only forwards the payload

I Copy only the request metadata to the userspace daemon

I New io_uring command that the daemon can use to reuse
in-kernel buffer for its own requests to backing storage

I v6 patch series by Ming Lei on io-uring/linux-block mailing lists

24



Can we do better?

ublk: Cache mappings in the kernel
Why bother with calling into userspace at all?

Guest

QEMU QSD

/dev/ublkc0/dev/ublkb0

🗐

8

I In common cases,
image formats only
map between offsets

I Why not cut out the
userspace daemon
instead of QEMU?

I Prototype showed
improved iops on file

25



Can we do better?

ublk: eBPF for handling requests in the kernel
Avoid userspace even harder

I Instead of just mappings, allow arbitrary logic

I If eBPF code handles the request, no need to involve userspace

I May allow to do additional things without a context switch
(e.g. updating dirty bitmaps)

I Ming Lei wrote some early prototype code

26



Can we do better?

Random other observations
Other exports can still improve, too

I The vhost-user-blk export has a hard-coded queue size of 128.
With vDPA, it's configurable and 256 by default.

I ublk benefits from allowing multiple I/O threads.
Exports should implement iothread-vq-mapping like virtio-blk.

I Something seems to be wrong with the NBD implementation.
A slower backend should hide its overhead, but it only gets worse.

27



Bonus data

Bonusdata

28



Bonus data

Null device (all exports)
4 vCPUs, 4 virtqueues, 1 iothread, 16 GB null device

4k null 64k null
0k

200k

400k

In-process (4 thr.) ublk* In-process vhost-user-blk blkio (vhost-user)
vhost-vdpa blkio (vdpa) virtio-vdpa FUSE fuse-direct

NBD

29



Bonus data

Disk backed (all exports)
4 vCPUs, 4 virtqueues, 1 iothread, 16 GB partition on NVMe

4k disk
0k

100k

200k

300k

64k disk
0k

10k

20k

30k

In-process (4 thr.) ublk* In-process vhost-user-blk blkio (vhost-user)
vhost-vdpa blkio (vdpa) virtio-vdpa FUSE fuse-direct

NBD

30



Bonus data

File backed (all exports)
4 vCPUs, 4 virtqueues, 1 iothread, 16 GB file on XFS+LVM+LUKS

4k file
0k

50k

100k

64k file
0k

10k

20k

30k

In-process vhost-user-blk blkio (vhost-user) vhost-vdpa blkio (vdpa)
virtio-vdpa FUSE fuse-direct NBD ublk*

31



Thank you
Red Hat is the world’s leading provider of
enterprise open source software
solutions. Award-winning support,
training, and consulting services make
Red Hat a trusted adviser to the Fortune
500.

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

http://linkedin.com/company/red-hat
http://youtube.com/user/RedHatVideos
http://facebook.com/redhatinc
http://twitter.com/RedHat

	Background
	What are our options?
	Can we do better?
	Bonus data

