
1

QEMU Status Report
KVM Forum 2024

Paolo Bonzini, Red Hat
Distinguished Engineer

2

2023 highlights
● Accelerators
● Build system
● Retrocomputing
● New devices
● Cleanups
● Infrastructure
● Security

3

Accelerators
● Removed HAX
● TCG plugin support on Windows
● KVM

● Xen-on-KVM supports PV console and network devices
● SEV-SNP support
● New architecture: loongarch

4

Build system
● Python virtual environment

● Meson, Sphinx, Avocado all use the same Python interpreter
● Easier to use “non-platform” Python on CentOS 8 and SLES 15
● Python 3.8 required

● Automatic dependency download
● pip
● Meson subprojects (libfdt, libslirp)

● Functional tests without Avocado

5

Retrocomputing
● 68k improvements (Mac OS, A/UX, NetBSD, Linux)
● 64-bit HPPA
● Deprecation and removal of ancient ARM boards
● Removal of NiosII and CRIS targets
● Rewritten ESP SCSI device
● Fixes to x86 TCG for 16-/32-bit protected mode

6

New devices
● virtio-sound
● virtio-gpu rutabaga

● Alternative to virglrenderer
● Supports multiple GPU protocols over virtio
● Wayland passthrough

7

Cleanups
● Final version of -audiodev/-audio
● Absence of host libraries can be used to disable boards

● Not just devices
● Example: libfdt

8

Infrastructure
● qemu.org and patchew moved to OSUOSL
● CI using Kubernetes runners on Azure
● New sponsorship: DigitalOcean!

9

Security
● More C compiler hardening (-fzero-call-used-regs,

-ftrivial-auto-var-init=zero)
● Coverity runs via Gitlab pipeline
● <suspense>

10

What was next in 2020?

11

More gitlab?
● Static site generation
● Primary repository
● Release process
● Issue tracking
● Wiki

✅

✅

✅

https://emojipedia.org/check-mark-button
https://emojipedia.org/check-mark-button
https://emojipedia.org/check-mark-button

12

More API, less command line?
● Extend -preconfig, allow configuration with QMP
● “Official” bindings for QAPI

❌

❌

13

Rust-y QEMU?
● “[RFC PATCH v1 0/6] Implement ARM PL011 in Rust”

(June 2024)
● Lots of discussion, but a generally positive attitude
● No one seems to be scared of learning (more) Rust

● Technical debt is a concern
● Preserve expectations while tipping into a completely different

ecosystem
● Merge early, iterate later

14

Build system integration
● cargo+make vs. rustc+meson

● New Meson required
● Requires handwritten meson.build for all dependent crates
● Work upstream into making meson understand Cargo.lock

● Some level of cargo integration still useful for clippy?
● Cross-compilation

● Procedural macros and their dependencies
● kconfig

15

Minimum supported Rust version
● Debian has 1.63.0
● Useful features from newer versions

● C string literals, offset_of! (1.77.0)
● Easier configuration of Clippy (1.74.0)

● None of these a blocker (offset_of! a bit harder)
● Might end up requiring 1.74.0+ for development

16

CI and linting
● clippy adds warnings on every new release

● Good: A CI job that builds with nightly rust
● Bad: broken CI every time a new warning is added

● Disable all lint groups, explicitly list desirable warnings
● Non-fatal CI job with lint groups enabled
● For every warning that happens in that job, decide

whether to enable it

17

QEMU APIs in Rust
● Immediate goal: No undefined behavior

● Only one &mut live at a single time
● All callbacks should take &self

● Goal: Devices should use (mostly) safe Rust code
● Wrap calls to C functions with Rust bindings
● Error, QOM, character devices

● Lower priority goal: Devices can use idiomatic Rust code
● Should come as a byproduct

18

Idiomatic Rust code
void pl011_realize(DeviceState *dev, Error **errp)
pub fn realize(&self) -> Result<(), qemu::Error>

● Automatically generate the extern “C” callbacks
● Wrap C types with conversion functions
● Automatic reference counting
● Type-safe casting
● …

19

Who to learn from?
● Mesa – early adopter of Rust with Meson
● glib – bindings, object system
● Linux – interoperability between C and Linux code

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

20

Thank you

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

