
QEMU live migration device state transfer
parallelization via multifd channels
Oracle

—
Maciej S. Szmigiero
Linux Virtualization and Security
September 22, 2024

1 / 21 | Copyright © 2024 Oracle and/or its affiliates | Public | September 22, 2024



Problem statement

Aka: What this talk is about?
—

• Current QEMU live migration device state transfer is done via the

(single) main migration channel

• Such way of transferring device state migration data reduces

performance and severally impacts the migration downtime for

VMs having large device state that needs to be transferred

during the switchover phase

• It’s 2024, multi-core / SMP systems do exist

• Some examples of devices that have such large switchover phase
device state are:

– Some types of VFIO SmartNICs
– GPUs

2 / 21 | Copyright © 2024 Oracle and/or its affiliates | Public | September 22, 2024



Problem statement

Aka: What this talk is about?
—

• Current QEMU live migration device state transfer is done via the

(single) main migration channel

• Such way of transferring device state migration data reduces

performance and severally impacts the migration downtime for

VMs having large device state that needs to be transferred

during the switchover phase

• It’s 2024, multi-core / SMP systems do exist

• Some examples of devices that have such large switchover phase
device state are:

– Some types of VFIO SmartNICs
– GPUs

2 / 21 | Copyright © 2024 Oracle and/or its affiliates | Public | September 22, 2024



Problem statement

Aka: What this talk is about?
—

The effort concentrated on setups with Mellanox

ConnectX-7 smart NIC

• So some information is specific to this device and its mlx5 Linux

kernel driver

• 128 GiB of on-board RAM, so a lot of possible device state
– Realistic setups are on order of hundreds of MiB of device state
per VF

• Unfortunately, only small part can be pre-copied

– But most of the talk is generic to any VFIO device
• GPUs likely have similar amounts of (Video)RAM, if not more
• With some optimizations even more generic

3 / 21 | Copyright © 2024 Oracle and/or its affiliates | Public | September 22, 2024



Problem statement

Aka: What this talk is about?
—

This talk describes the efforts to parallelize the transfer and loading of

device state for these VFIO devices by utilizing QEMU existing

support for having multiple migration connections

• That is, by utilizing multifd channels for their transfer, together

with other parallelization improvement

• The main metric being optimized is live migration downtime

– Especially how it scales with number of VFIO devices and their
device state size

4 / 21 | Copyright © 2024 Oracle and/or its affiliates | Public | September 22, 2024



Multifd
—

Multifd introduced in QEMU 2.11 in late 2017 by Juan Quintela

• Prior art showed that single migration stream becomes
CPU-bound at about 10 Gbit/s

– https://wiki.qemu.org/Features/Migration-Multiple-fds
– Current data center NICs are 100+ GBit/s

• RAM transfer only

• Single thread queuing RAM pages to be sent

• Multiple threads (channels) doing actual sending and receiving

– Easy implementation for RAM transfer since these threads just
need to read/write appropriate HVA

• A good starting point but needs some extending to be usable to

transferring device state

5 / 21 | Copyright © 2024 Oracle and/or its affiliates | Public | September 22, 2024

https://wiki.qemu.org/Features/Migration-Multiple-fds


Multifd
—

Multifd introduced in QEMU 2.11 in late 2017 by Juan Quintela

• Prior art showed that single migration stream becomes
CPU-bound at about 10 Gbit/s

– https://wiki.qemu.org/Features/Migration-Multiple-fds
– Current data center NICs are 100+ GBit/s

• RAM transfer only

• Single thread queuing RAM pages to be sent

• Multiple threads (channels) doing actual sending and receiving

– Easy implementation for RAM transfer since these threads just
need to read/write appropriate HVA

• A good starting point but needs some extending to be usable to

transferring device state

5 / 21 | Copyright © 2024 Oracle and/or its affiliates | Public | September 22, 2024

https://wiki.qemu.org/Features/Migration-Multiple-fds


Current state
—

• Single migration stream introduces interlocking between
different devices

– Because device state is saved / loaded in-order
– Since every NIC VF means a separate VFIO QEMU device this
scales really poorly

– Theoretically partially fixable by decoupling data transfer
operation from its handling

• AFAIK no one announced such effort

• Until recently, kernel-side VFIO state saving and loading wasn’t

pipelined

6 / 21 | Copyright © 2024 Oracle and/or its affiliates | Public | September 22, 2024



History of improvements
—

• QEMU changes only show performance benefits insofar there

aren’t bottlenecks on the kernel/device side

• Mellanox/NVIDIA improving loading

• Chunk mode merged in Sep 2023

– Double buffering
– Separate device reading task (“work”) from the QEMU reading
thread

– https://lore.kernel.org/kvm/20230911093856.
81910-1-yishaih@nvidia.com/

– Released in kernel 6.7

7 / 21 | Copyright © 2024 Oracle and/or its affiliates | Public | September 22, 2024

https://lore.kernel.org/kvm/20230911093856.81910-1-yishaih@nvidia.com/
https://lore.kernel.org/kvm/20230911093856.81910-1-yishaih@nvidia.com/


Channel headers
—

Channel type detection is based solely on whether the received data

starts with QEMU_VM_FILE_MAGIC

• If yes - that’s the main migration channel

• Everything else is considered a multifd channel

• Not very flexible

• Channel headers to the rescue

– Introduce explicit header for migration channels
– Originally developed by Avihai Horon from NVIDIA
– Included in the RFC (version 0) of my patch set

– Unfortunately, weren’t accepted :(
• We have to live with extending the existing migration bit stream

8 / 21 | Copyright © 2024 Oracle and/or its affiliates | Public | September 22, 2024



Channel headers
—

Channel type detection is based solely on whether the received data

starts with QEMU_VM_FILE_MAGIC

• If yes - that’s the main migration channel

• Everything else is considered a multifd channel

• Not very flexible

• Channel headers to the rescue

– Introduce explicit header for migration channels
– Originally developed by Avihai Horon from NVIDIA
– Included in the RFC (version 0) of my patch set

– Unfortunately, weren’t accepted :(
• We have to live with extending the existing migration bit stream

8 / 21 | Copyright © 2024 Oracle and/or its affiliates | Public | September 22, 2024



Channel headers
—

Channel type detection is based solely on whether the received data

starts with QEMU_VM_FILE_MAGIC

• If yes - that’s the main migration channel

• Everything else is considered a multifd channel

• Not very flexible

• Channel headers to the rescue

– Introduce explicit header for migration channels
– Originally developed by Avihai Horon from NVIDIA
– Included in the RFC (version 0) of my patch set

– Unfortunately, weren’t accepted :(
• We have to live with extending the existing migration bit stream

8 / 21 | Copyright © 2024 Oracle and/or its affiliates | Public | September 22, 2024



Dedicated channels
—
The RFC version (version 0) of patch set had dedicated device state

transfer multifd channels

• These seem to improve downtime somewhat

– Dedicated device state transfer multifd channels don’t need to
participate in RAM sync process

– ~14% improvement over shared multifd channels configuration in
simple/naive tests (1250 msec vs 1100 msec)

• 15:4 multfd channels total:dedicated config vs 11:0 or 15:0 multfd

total:dedicated channels config
• Higher channel counts did not improve downtime, above certain

count even negative impact

– At that point lacked an automated testing tool that would allow
collecting many downtime samples

• Shared channels weren’t exactly liked by reviewers so need to
find out if it is possible to remove them

– Whether it is possible to achieve the same performance
(downtime) with just shared channels

9 / 21 | Copyright © 2024 Oracle and/or its affiliates | Public | September 22, 2024



Dedicated channels
—
The RFC version (version 0) of patch set had dedicated device state

transfer multifd channels

• These seem to improve downtime somewhat

– Dedicated device state transfer multifd channels don’t need to
participate in RAM sync process

– ~14% improvement over shared multifd channels configuration in
simple/naive tests (1250 msec vs 1100 msec)

• 15:4 multfd channels total:dedicated config vs 11:0 or 15:0 multfd

total:dedicated channels config
• Higher channel counts did not improve downtime, above certain

count even negative impact

– At that point lacked an automated testing tool that would allow
collecting many downtime samples

• Shared channels weren’t exactly liked by reviewers so need to
find out if it is possible to remove them

– Whether it is possible to achieve the same performance
(downtime) with just shared channels

9 / 21 | Copyright © 2024 Oracle and/or its affiliates | Public | September 22, 2024



No dedicated channels
—

• It tuned out that achieving the same performance (downtime)

with shared channels is indeed possible

• The key is to avoid using too manymultifd channels
– The same downtime as in 15:4 can also be achieved in the 6:0
config - that, is by reducing the total multifd channel count to 6

• This actually needed a new dedicated automated testing tool

– Above certain point further channel count increases actually
increase downtime

• We probably want to learn the detailed reason for this someday

– It is not about RAM syncs as these were measured to have hardly
any time impact

– In general, having to tune the channel count to the particular
workload is bad

– We probably want to have as wide “channel count tolerance band”
as possible

10 / 21 | Copyright © 2024 Oracle and/or its affiliates | Public | September 22, 2024



Current design
—

• 1:1 VFIO devices to threads mapping
– Saving/queuing thread

• Reads device state from the device (kernel driver) and queues it to a

multifd channel

– Loading thread
• Tries to write back buffers to the device (kernel driver) in-order once

they become available

• Limit of buffered device state size to cap the max receiving

QEMU process memory allocations

11 / 21 | Copyright © 2024 Oracle and/or its affiliates | Public | September 22, 2024



Current thread design
—

• Loading threads in multifd-managed thread pool

– Possible to use fewer threads than devices

• Details still being discussed with community

– We probably be basing the generic QEMU thread pool on Glib’s
GThreadPool rather than QEMU AIO thread pool

– Requires some extensions to GThreadPool like thread_pool_wait()
– Might want to upstream this to Glib first rather than open code in
QEMU

• Other threads still VFIO-driver managed

– It’s unclear if managing them in centralized way would add
benefits that offset extra complexity

12 / 21 | Copyright © 2024 Oracle and/or its affiliates | Public | September 22, 2024



Current design
—

Device state change only partially parallelized

• Only save-side VFIO_DEVICE_STATE_STOP_COPY ->

VFIO_DEVICE_STATE_STOP

• Other state transitions might be parallelized in the future too

– In case of VF of single NIC requires that these be truly separate
performance-wise in the device

• Some challenges in further load parallelization
– For example, current VFIO VMState has to be loaded in the main
migration thread

• Calls QEMU core address space methods which AFAIK require BQL
• Probably long-term fixable with some QEMU core

adaptations/extensions

13 / 21 | Copyright © 2024 Oracle and/or its affiliates | Public | September 22, 2024



Benchmarks

Test setup
—

• Source machine:

– 2x Xeon Gold 5218
– 192 GiB RAM
– Mellanox ConnectX-7 with 100GbE link
– 6.9.0-rc1+ kernel

• Target machine:

– 2x Xeon Platinum 8260
– 376 GiB RAM
– Mellanox ConnectX-7 with 100GbE link
– 6.6.0+ kernel

• VM:

– vCPU 12 cores x 2 threads
– 15 GiB RAM
– From 1 to 4 Mellanox ConnectX-7 VFs

• Unfortunately, this setup does not allow testing more than 4 VFs

14 / 21 | Copyright © 2024 Oracle and/or its affiliates | Public | September 22, 2024



Benchmarks

QEMU setup
—

• x-return-path=true

• x-switchover-ack=true

• ~100 MiB of device state per VF

• Benchmarking methodology:
– Multiple runs to catch truly idle guest using a dedicated
automated testing tool

• Sometimes takes up to 30 live migrations for downtime value to

stabilize
• 70+ runs done to be sure

– Guest NOT restarted between runs
• Guest could be busy during some of these runs

– Guest restarted for different configurations

15 / 21 | Copyright © 2024 Oracle and/or its affiliates | Public | September 22, 2024



Performance results

Downtime with large VFIO total device state size
—

• 6 multifd shared channels

• VFIO device state size roughly the same each run

• Lowest downtime value taken

– Not measuring dirty RAM transfer speed after all

Results:
4 VFs 2 VFs 1 VF

Multifd device state transfer disabled 1783 ms 614 ms 283 ms

Multifd device state transfer enabled 1068 ms 434 ms 274 ms

IMPROVEMENT ~67% ~40% ~3%

16 / 21 | Copyright © 2024 Oracle and/or its affiliates | Public | September 22, 2024



Performance results

Downtime with large VFIO total device state size with different multifd

channel counts
—

• 4 VFs

• Around 430 MiB of device state

Results:
Lowest 25th percentile Median 75th percentile

6 channels 1068 ms 1092 ms 1130 ms 1204 ms

8 channels 1067 ms 1116 ms 1157 ms 1251 ms

12 channels 1072 ms 1209 ms 1263 ms 1310 ms

15 channels 1170 ms 1256 ms 1299 ms 1364 ms

20 channels 1117 ms 1273 ms 1310 ms 1376 ms

25 channels 1225 ms 1279 ms 1315 ms 1356 ms

17 / 21 | Copyright © 2024 Oracle and/or its affiliates | Public | September 22, 2024



Patch set status
—

• Version 2 of patch set posted, versions 3 will be posted soon

– At the beginning there was an RFC - which was essentially the
version zero of this patch set

• Hopefully the basic patch set will make QEMU 9.2

18 / 21 | Copyright © 2024 Oracle and/or its affiliates | Public | September 22, 2024



Additional concurrency
—

• QEMUmigration code isn’t async and does not return to the
main loop

– Would require significant effort as QEMU migration API consumer
/ user drivers would need to be event-driven too

• AIO support for kernel still missing

– Requires kernel API changes

• Unordered VFIO device state loading would simplify userspace
(QEMU) code

– The kernel mlx5 driver doesn’t even support non-blocking /
poll()-style device state loading currently

• OTOH, non-blocking / poll()-style device state reading is already

possible

• In the end, we probably want to be fully CPU bound

– Either host CPU or VFIO device on-board {C,G}PU - best by both

19 / 21 | Copyright © 2024 Oracle and/or its affiliates | Public | September 22, 2024



Additional concurrency
—

• QEMUmigration code isn’t async and does not return to the
main loop

– Would require significant effort as QEMU migration API consumer
/ user drivers would need to be event-driven too

• AIO support for kernel still missing

– Requires kernel API changes

• Unordered VFIO device state loading would simplify userspace
(QEMU) code

– The kernel mlx5 driver doesn’t even support non-blocking /
poll()-style device state loading currently

• OTOH, non-blocking / poll()-style device state reading is already

possible

• In the end, we probably want to be fully CPU bound

– Either host CPU or VFIO device on-board {C,G}PU - best by both

19 / 21 | Copyright © 2024 Oracle and/or its affiliates | Public | September 22, 2024



Future directions
—

• Live stage device state transfer

– Won’t improve downtime but might improve overall migration time
– More complex scheduling as devices can constantly generate new

dirty data to be transferred
– Would need switchover point estimation improvements to be truly
effective

• Having large device state that can’t be transferred during the VM live

phase breaks expected downtime estimation
• Currently one has to manually set migration channel bandwidth

(avail-switchover-bandwidth) for things to work correctly

• Extending more devices with multifd device state transfer

– Quite obvious future direction but scales poorly in terms of
amount of benefit per amount of work

• Generic framework for parallel VMState transfer?

• Multifd compression support?

20 / 21 | Copyright © 2024 Oracle and/or its affiliates | Public | September 22, 2024



Q & A
—

Questions?

21 / 21 | Copyright © 2024 Oracle and/or its affiliates | Public | September 22, 2024


