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Memory Overcommitment

A hypervisor can allocate more guest-physical
memory to virtual machines (VMs) than the available
host-physical memory (RAM).

e Ballooning: A balloon driver inside the guest OS
inflates to occupy more memory, which the
hypervisor can then reclaim from VM.

e Hypervisor Swap: The hypervisor can swap

memory pages from VMs to disk, freeing up
RAM.
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Live Migration with Memory

Overcommitment

e Transfer all dirty pages from source
to destination

e Swapped out pages are faulted in
and transferred to destination
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Live Migration Challenges

e Live migration touches all guest memory, causing page faults on swapped-out pages
o Page faults are costly
o Impact on live migration data transfer throughput
o Causes heavy page thrashing

e Slower data transfer give guest more time to dirty memory, creating a vicious cycle
o Overall huge time to migrate VMs

e Live migration disturbs guest active working set
o Faulted pages become MRU
o Causes bad page reclamation decisions



L ack of control for user customizations

e Need full control over swapped out pages and choose where to place it
e Make it lightweight by removing bloat that we don’t need

e Enable swap policies specific to each VM



Swap Tiering

If we have control over swapped out
pages, we can optimally utilize hierarchy

of multiple swap devices.
VM Address Space

e HDD, SATA SSD, NVMe SSD devicesand

e Faster devices are costlier and have
limited capacity

Multi-tiered swap Backend
() Swap out warmer pages to faster

devices
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How UserfaultFD helps?

e Userspace memory manager

e What is userfaultFD?

o Userspace page fault handler
o Process waits until page fault is resolved by userspace
o Supports async page fault for guests

o No control over page swap out path



High Level Summary

e Disable Native Swapping for QEMU processes

e Introduce common external service (Mem-controller)
o Handles and manages memory for all QEMU processes

e QEMU uses shared memory allocated by the service.
e Communicates with QEMU over a UNIX socket

e Takes full control over the VM'’s address space using userfaultfd
o All swapping and page faults decisions are managed by mem-controller



Initial Setup
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Swap Out
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Swap In
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Live Migration Overview

e Sending pages which are swapped out requires costly page faults.
o Disturbs guest WSS and causes thrashing

e Pages on remote swap target can be directly mapped on destination

e Page faults on destination side still possible
o Page data received from source is always the latest
o Page faults can mapped with zero page, avoiding costly swapins
o Keep source and destination swap state in sync by sending frequent hints



Live Migration Workflow
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Throughput Comparison
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Throughput Comparison
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Real Workload: Redis
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Real Workload: Kernel Compile
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Time to migrate (seconds)

Live Migration Gains
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Conclusion

e Alight weight userfaultFD based memory-controller approach performs

really well and gives significant improvement in memory overcommitted
VM's runtime performance.

e UserfaultFD based approach is performing well but it bottlenecks for
superfast swap backends.

o  Will explore reducing userfaultFD bottlenecks as future work

e Control over swapped out pages, helps in avoiding page thrashing during
live migrations, hence faster live migrations.
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Reduce UserfaultFD Latencies

UserfaultFD based approach doesn't scale for super-fast swap devices

e UserfaultFD operation cost increases with number of shared memory address spaces

o Most userfaultFD operations are not completely synchronous,
so can benefit from parallel swapper/faulter

o Larger swap granularity (e.g. 16KB) significantly reduces average overheads

e Large latency due to context switches
o Frequent user/kernel transitions
o Investigate on new approaches to handle and acknowledge events
o Consider using iorings mapped into both kernel and userspace



Reduce UserfaultFD Latencies

e Avoid extra memory copies by UFFD_COPY

e High latencies with MADV_REMOVE or fallocate PUNCH_HOLE
o Most significant overhead
o Exclusively locks memory address space, preventing parallel operations
o Need further efforts to make it faster



Memory Balloon Hints

e Modifications on memory address not allowed by anything other than mem-controller.
o Disturbs management and statistics managed by mem-controller.

e Ballooning is managed by QEMU, QEMU does following on balloon events.
o Inflate Balloon: MADV_REMOVE or MADV_DONTNEED on pages.
o Deflate Balloon: MADV_WILLNEED on pages.

e Balloon events need to be managed by mem-controller process.
o QEMU processes virtio-balloon rings and sends events to mem-controller
o or shares virtio rings with mem-controller for direct processing.
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