
Virtual Machine Memory
Overcommitment with

UserfaultFD
KVM Forum | September 2024

Table of
Contents

1. Background

2. Current Challenges

3. Design and Workflow

4. Results

5. Future Work

2

Background

Memory Overcommitment

A hypervisor can allocate more guest-physical
memory to virtual machines (VMs) than the available
host-physical memory (RAM).

● Ballooning: A balloon driver inside the guest OS
inflates to occupy more memory, which the
hypervisor can then reclaim from VM.

● Hypervisor Swap: The hypervisor can swap
memory pages from VMs to disk, freeing up
RAM.

4

● Transfer all dirty pages from source
to destination

● Swapped out pages are faulted in
and transferred to destination

Live Migration with Memory
Overcommitment

5

Current Challenges

Live Migration Challenges

● Live migration touches all guest memory, causing page faults on swapped-out pages
○ Page faults are costly
○ Impact on live migration data transfer throughput
○ Causes heavy page thrashing

● Slower data transfer give guest more time to dirty memory, creating a vicious cycle
○ Overall huge time to migrate VMs

● Live migration disturbs guest active working set
○ Faulted pages become MRU
○ Causes bad page reclamation decisions

7

Lack of control for user customizations

● Need full control over swapped out pages and choose where to place it

● Make it lightweight by removing bloat that we don’t need

● Enable swap policies specific to each VM

8

Swap Tiering
If we have control over swapped out
pages, we can optimally utilize hierarchy
of multiple swap devices.

● HDD, SATA SSD, NVMe SSD devices and
temporary RAM read only caches

● Faster devices are costlier and have
limited capacity

● Swap out warmer pages to faster
devices

9

Design and Workflow

● Userspace memory manager

● What is userfaultFD?

○ Userspace page fault handler

○ Process waits until page fault is resolved by userspace

○ Supports async page fault for guests

○ No control over page swap out path

How UserfaultFD helps?

11

High Level Summary

● Disable Native Swapping for QEMU processes

● Introduce common external service (Mem-controller)
○ Handles and manages memory for all QEMU processes

● QEMU uses shared memory allocated by the service.

● Communicates with QEMU over a UNIX socket

● Takes full control over the VM’s address space using userfaultfd
○ All swapping and page faults decisions are managed by mem-controller

12

Initial Setup

13

Swap Out

● Page status map
● Random page selection
● Static memory limit
● Swap out group of pages

Key details

14

Swap In

15

Live Migration Overview
● Sending pages which are swapped out requires costly page faults.

○ Disturbs guest WSS and causes thrashing

● Pages on remote swap target can be directly mapped on destination

● Page faults on destination side still possible
○ Page data received from source is always the latest
○ Page faults can mapped with zero page, avoiding costly swapins
○ Keep source and destination swap state in sync by sending frequent hints

16

17

Live Migration Workflow
Steps on Source:

● Mem-controller shares page status
map with QEMU

● QEMU skips transferring swapped
out pages

● QEMU sends skipped pages details to
destination in final stage of live
migration

Steps on Destination:

● QEMU updates skipped pages details
to mem-controller

● Skipped pages faults are resolved
from source target

● Skipped pages synced in background

Results

VM Config - Memory: 12GB, 12vCPUs
Workload Config: Synthetic, 10GB WSS, Single threaded

Throughput Comparison

2-3x better!

19

Throughput Comparison

VM Config: Memory: 12GB, 12vCPUs
Workload Config: Synthetic, 10GB WSS, Single threaded

20

20% gain 8% regression

Real Workload: Redis

VM Config: Memory: 5GB, 4 vCPUs
Swap Ratio: 0.5

Workload WSS : ~2.5GB
21

20% gain

Real Workload: Kernel Compile

VM Config: Memory: 2GB, 4 vCPUs
Swap Ratio: 0.5

Swap Backend: SATA SSD
22

8% regression

Live Migration Gains

VM Config: Memory: 12GB, 12vCPUs
Workload Config: 10GB WSS Single threaded

Swap Backend: SATA SSD
23

4.5x better!

Conclusion

● A light weight userfaultFD based memory-controller approach performs
really well and gives significant improvement in memory overcommitted
VM’s runtime performance.

● UserfaultFD based approach is performing well but it bottlenecks for
superfast swap backends.
○ Will explore reducing userfaultFD bottlenecks as future work

● Control over swapped out pages, helps in avoiding page thrashing during
live migrations, hence faster live migrations.

24

Future Work

Reduce UserfaultFD Latencies
UserfaultFD based approach doesn’t scale for super-fast swap devices
● UserfaultFD operation cost increases with number of shared memory address spaces

○ Most userfaultFD operations are not completely synchronous,
so can benefit from parallel swapper/faulter

○ Larger swap granularity (e.g. 16KB) significantly reduces average overheads
● Large latency due to context switches

○ Frequent user/kernel transitions
○ Investigate on new approaches to handle and acknowledge events
○ Consider using iorings mapped into both kernel and userspace

26

Reduce UserfaultFD Latencies
● Avoid extra memory copies by UFFD_COPY

● High latencies with MADV_REMOVE or fallocate PUNCH_HOLE
○ Most significant overhead
○ Exclusively locks memory address space, preventing parallel operations
○ Need further efforts to make it faster

27

Memory Balloon Hints

● Modifications on memory address not allowed by anything other than mem-controller.
○ Disturbs management and statistics managed by mem-controller.

● Ballooning is managed by QEMU, QEMU does following on balloon events.
○ Inflate Balloon: MADV_REMOVE or MADV_DONTNEED on pages.
○ Deflate Balloon: MADV_WILLNEED on pages.

● Balloon events need to be managed by mem-controller process.
○ QEMU processes virtio-balloon rings and sends events to mem-controller
○ or shares virtio rings with mem-controller for direct processing.

28

Thank You

