Virtual Machine Memory
Overcommitment with
UserfaultFD

KVM Forum | September 2024

NUTANIXX



Background

. Current Challenges

Design and Workflow

Results

Future Work



Background

NUTANIX



Memory Overcommitment

A hypervisor can allocate more guest-physical
memory to virtual machines (VMs) than the available
host-physical memory (RAM).

e Ballooning: A balloon driver inside the guest OS
inflates to occupy more memory, which the
hypervisor can then reclaim from VM.

e Hypervisor Swap: The hypervisor can swap

memory pages from VMs to disk, freeing up
RAM.

_________ 2 4

Hypervisor

%SWapped out page

Guest E] In-Memory Page
“"Balloon
driver
T T
D Vi T — -




Live Migration with Memory

Overcommitment

e Transfer all dirty pages from source
to destination

e Swapped out pages are faulted in
and transferred to destination

- Dirty page - swapped out

- Dirty page

Page3 migration
‘ Pagel migratio .

VM address space

VM address space
Source Node

Destination node




Current Challenges

NUTANIX



Live Migration Challenges

e Live migration touches all guest memory, causing page faults on swapped-out pages
o Page faults are costly
o Impact on live migration data transfer throughput
o Causes heavy page thrashing

e Slower data transfer give guest more time to dirty memory, creating a vicious cycle
o Overall huge time to migrate VMs

e Live migration disturbs guest active working set
o Faulted pages become MRU
o Causes bad page reclamation decisions



L ack of control for user customizations

e Need full control over swapped out pages and choose where to place it
e Make it lightweight by removing bloat that we don’t need

e Enable swap policies specific to each VM



Swap Tiering

If we have control over swapped out
pages, we can optimally utilize hierarchy

of multiple swap devices.
VM Address Space

e HDD, SATA SSD, NVMe SSD devicesand

e Faster devices are costlier and have
limited capacity

Multi-tiered swap Backend
() Swap out warmer pages to faster

devices




Design and Workflow

NUTANIX



How UserfaultFD helps?

e Userspace memory manager

e What is userfaultFD?

o Userspace page fault handler
o Process waits until page fault is resolved by userspace
o Supports async page fault for guests

o No control over page swap out path



High Level Summary

e Disable Native Swapping for QEMU processes

e Introduce common external service (Mem-controller)
o Handles and manages memory for all QEMU processes

e QEMU uses shared memory allocated by the service.
e Communicates with QEMU over a UNIX socket

e Takes full control over the VM'’s address space using userfaultfd
o All swapping and page faults decisions are managed by mem-controller



Initial Setup

Vhost-user
backend

Guest Memory

Memory
Shared With
MemFD

Share memFD
over vhost user
protocol

QEMU

Guest Memory

Request
userfaultFD for
memory region

Memory
Shared With
MemFD

Request memory
region

Mem Controller

Guest Memory

Allocate a memory region

Step 1: Create
Memory region

with memFD

Return
userfaultFD

Step2 : Register
userfaultFD for

Return memFD

Store all userfaultFDs for the

all address
spaces

Set
userfaultFDs for
memory region

memory region and start poll
for events

Communication over vhost user

socket

Communication over memory
controller backend path. (unix

socket)



Swap Out

Per VM Swapper

Scan over all

Get swap target

registered o
memory regions forremei(r)nnory
for the VM g
Key details

e Page status map

e Random page selection
e Static memory limit

e Swap out group of pages

R

Select pages to
swapout

Swapper Pool

Swapper-1

Mark page
state to
SWAPPING_OUT

SR S

UserfaultFD
write protect
page

P F—

Swap page to
backend

MADV_REMOVE
page

UserfaultFD
write unprotect
page.

Swapper-2

Swapper-N




Swap In

Per VM Fault
Handler

Poll over all
registered
userfaultFD for the
VM

Read fault events

and push requests
to Faulter Pool

Faulter Pool

Faulter-1

Faulter-2 Faulter-N

Check page
fault reason

UserfaultFD
remove write
protection for
page.

Wait until page is
SWAPPED_OUT

and update to
SWAPPING_IN

Swap in page
from backend

UFFD_COPY
page

Update page
status to
MAPPED




Live Migration Overview

e Sending pages which are swapped out requires costly page faults.
o Disturbs guest WSS and causes thrashing

e Pages on remote swap target can be directly mapped on destination

e Page faults on destination side still possible
o Page data received from source is always the latest
o Page faults can mapped with zero page, avoiding costly swapins
o Keep source and destination swap state in sync by sending frequent hints



Live Migration Workflow

Steps on Source:  ITTIITTIITIIIIIIEETIEIIIIE I I

Source Destination

e Mem-controller shares page status :
map with QEMU ; QeEmu

e QEMU skips transferring swapped ; ‘ eration: Transfrs
out pages : pages

e QEMU sends skipped pages details to
destination in final stage of live

QEMU

Live Migration End:
Send skipped pages
details and swap target

[ Update SkipPage details
[ and source swap target

Sync skipped
pages in
backgroud

If Page was
skipped

migration il
Swapped | 1 l
. . ' Mapped | 0 | —
Steps on Destination: : i
; Mapped o]
e QEMU updates skipped pages details 5 Status Map Bhmap 1 e—
to mem-controller : - Z 0| fronstion
. i3 - @ 1 Elele=
e Skipped pages faults are resolved 89 E3%8 S s
g3 = E Map Map
from source target - 523 URFD
= o = . 5 Fault Event

e Skipped pages synced in background

Kernel

Memory Controller

No

1
|
|
|
|
|
|
]
|
|
|
|
I
|
|
|
|
|
|
|
|
| Memory Controller
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
1




Results

NUTANIX



Throughput Comparison

Swap Backend: SATA SSD

B Native Linux Swap Subsystem [l Mem-Controller
300

2-3x better!

200

100

Throughput (MB/s)

0.25 0.5 0.75

Swap Ratio

VM Config - Memory: 12GB, 12vCPUs
Workload Config: Synthetic, 10GB WSS, Single threaded



Throughput Comparison

Swap Backend: NVME

B Native Linux Swap Subsystem [l Mem-Controller

Swap Backend: Ram-Disk

B Native Linux Swap Subsystem [l Mem-Controller
800

800
. 8% regression
20% gain
600 600
Q
o)
=S
5400 400
o .
=
D )
>
o
£ 200 200

0.5 0.5

Swap Ratio Swap Ratio

VM Config: Memory: 12GB, 12vCPUs
Workload Config: Synthetic, 10GB WSS, Single threaded



Real Workload: Redis

Redis
10) Backend -
2000
20% gain

1500
(8]
3
w
o

O 1000
(0]
(o))
©
g
<

500

0

Native Linux Swap Subsystem Mem-Controller

VM Config: Memory: 5GB, 4 vCPUs
Swap Ratio: 0.5
Workload WSS : ~2.5GB



Real Workload: Kernel Compile

Kernel Compile

1500
8% regression

0)

2 1000

3

[0}

o

0

a

£

o

O

2 500

(0]

£

'_

Native Linux Swap Subsystem Mem-Controller

VM Config: Memory: 2GB, 4 vCPUs
Swap Ratio: 0.5
Swap Backend: SATA SSD



Time to migrate (seconds)

Live Migration Gains

Time to Migrate Data Transferred

250 B Data Transferred (GB) == Mapped Memory

200
150 8
H
4.5x better! 5
100 @
o
[
S
50 a
0
Native Linux Swap Subsystem Mem-Controller Native Linux Swap Subsystem Mem-Controller

VM Config: Memory: 12GB, 12vCPUs
Workload Config: 10GB WSS Single threaded
Swap Backend: SATA SSD




Conclusion

e Alight weight userfaultFD based memory-controller approach performs

really well and gives significant improvement in memory overcommitted
VM's runtime performance.

e UserfaultFD based approach is performing well but it bottlenecks for
superfast swap backends.

o  Will explore reducing userfaultFD bottlenecks as future work

e Control over swapped out pages, helps in avoiding page thrashing during
live migrations, hence faster live migrations.



Future Work

NUTANIX



Reduce UserfaultFD Latencies

UserfaultFD based approach doesn't scale for super-fast swap devices

e UserfaultFD operation cost increases with number of shared memory address spaces

o Most userfaultFD operations are not completely synchronous,
so can benefit from parallel swapper/faulter

o Larger swap granularity (e.g. 16KB) significantly reduces average overheads

e Large latency due to context switches
o Frequent user/kernel transitions
o Investigate on new approaches to handle and acknowledge events
o Consider using iorings mapped into both kernel and userspace



Reduce UserfaultFD Latencies

e Avoid extra memory copies by UFFD_COPY

e High latencies with MADV_REMOVE or fallocate PUNCH_HOLE
o Most significant overhead
o Exclusively locks memory address space, preventing parallel operations
o Need further efforts to make it faster



Memory Balloon Hints

e Modifications on memory address not allowed by anything other than mem-controller.
o Disturbs management and statistics managed by mem-controller.

e Ballooning is managed by QEMU, QEMU does following on balloon events.
o Inflate Balloon: MADV_REMOVE or MADV_DONTNEED on pages.
o Deflate Balloon: MADV_WILLNEED on pages.

e Balloon events need to be managed by mem-controller process.
o QEMU processes virtio-balloon rings and sends events to mem-controller
o or shares virtio rings with mem-controller for direct processing.



Thank You

NUTANIX



