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This is getting confusing

Virtio-gpu, who are you?

VirGL

VirGL2

Venus

DRM native context

gfxstream
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Though I prefer calling them “personalities”

Virtio-gpu Contexts (I)

▸ linux/include/uapi/linux/virtio_gpu.h:
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Though I prefer calling them “personalities”

Virtio-gpu Contexts (II)

▸ rutabaga_gfx/src/rutabaga_utils.rs:
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Though I prefer calling them “personalities”

Virtio-gpu Contexts (II)

▸ rutabaga_gfx/src/rutabaga_utils.rs:
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A three act story

How virtio-gpu became The Faceless Device
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▸ EXECBUFFER
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▸ EXECBUFFER

･ A unidirectional opaque transport.
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▸ EXECBUFFER

･ A unidirectional bidirectional opaque transport.

▸ F_RESOURCE_BLOB

･ Rings, queues, mapped FDs…

A three act story

How virtio-gpu became The Faceless Device
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▸ EXECBUFFER

･ A unidirectional bidirectional opaque transport.

▸ F_RESOURCE_BLOB

･ Rings, queues, mapped FDs…

▸ Fences

･ Pollable objects.

A three act story

How virtio-gpu became The Faceless Device
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▸ Serializes Vulkan commands.

･ Easier than GL, since it operates at a less abstract level.

▸ Makes heavy use of BLOBs.

▸ Use cases:

･ Project Borealis: games on Chromebooks

･ Podman Desktop: run GPU-accelerated containers on macOS 

for LLM inference.

Serializing Vulkan

Venus
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From Vulkan to Metal

Podman with Venus on macOS 

Linux VM (guest) macOS (host)

Application Mesa 
(Rusticl/Zink/Venus) MoltenVK Metal Framework

Venus

Application
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From Vulkan to Metal

Podman with Venus on macOS 

Linux VM (guest) macOS (host)

libkrun
Hypervisor.framework

GPU Memory
Data Buffer Shader 

Buffer

Data Buffer

Shader 
Buffer

Application
(Rusticl/Zink/Venus)

Injected into
the VM using 

Hypervisor.framewo
rk

Shader 
Buffer

Data Buffer
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▸ Drawing in the framebuffer isn’t always the most desirable approach.

･ Worse UI

･ Worse Performance

▸ But we need a way for apps running in the guest to talk to the 

compositor in the host.

▸ Offers primitives to support a nested Wayland compositor

･ Replaces virtio-wl

A compositors game

Cross-domain
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▸ Serializes DRM ioctls!

･ Requires specific support in the Mesa driver.

･ Requires a dedicated controller in virglrenderer for each GPU 

driver.

･ msm (Freedreno), amdgpu, intel (WIP), asahi (WIP)

▸ Use cases

･ Borealis?

･ Commercial games on Asahi Linux

Let’s go lower!

DRM native context
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I think we just need one more layer

Asahi Linux’s problem with Commercial Games

▸ Apple Silicon is ARM64, while most commercial games only provide 

x86_64 binaries.

･ Use a (fast!) userspace x86_64 emulator.

▸ Asahi Linux is a 16K page distribution.

･ Run a 4K kernel in a VM.
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I think we just need one more layer

Asahi Linux’s problem with Commercial Games

▸ Apple Silicon is ARM64, while most commercial games only provide 

x86_64 binaries.

･ Use a (fast!) userspace x86_64 emulator.

▸ Asahi Linux is a 16K page distribution.

･ Run a 4K kernel in a VM.

▸ VMs doesn’t have direct access to graphics.

･ Use DRM native context.
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Using the marvelous reverse-engineered Asahi GPU driver

DRM native-context  + krun + fex-emu on Asahi Linux

DEMO
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▸ Asahi Lina’s Mastodon post:

･ https://vt.social/@lina/112524118075585601

▸ Asahi Lina’s Live Stream trying out games:

･ https://youtube.com/live/JT9a_MrFV18

https://vt.social/@lina/112524118075585601
https://youtube.com/live/JT9a_MrFV18


linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat
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Red Hat is the world’s leading provider of enterprise 

open source software solutions. Award-winning 

support, training, and consulting services make 

Red Hat a trusted adviser to the Fortune 500. 

Questions?
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Red Hat is the world’s leading provider of enterprise 

open source software solutions. Award-winning 

support, training, and consulting services make 

Red Hat a trusted adviser to the Fortune 500. 

Thank you
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▸ Encodes GL operations in the guest, decodes them in the host.

･ In the guest, it’s implemented as a Gallium driver in Mesa.

･ In the host, it’s supported by the virglrenderer library linked 

against the virtio-gpu device implementation.

･ Written by hand

▸ Use case: run GPU-accelerated VMs pretty much everywhere.

The ones who started it all

VirGL and VirGL2
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▸ Auto-generates GLES and Vulkan calls.

▸ Was developed as part of Android Studio.

▸ AFAWK, AOSP is going to deprecate VirGL (no longer enabled by 

default in the builds) in favor of GfxStream.

▸ It’s upstream status beyond Android is so-so.

▸ Multiple flavors:

･ GLES, VK, MAGMA?, COMPOSITOR?

Android’s preferred solution

GfxStream


