
The many faces of
virtio-gpu

Sergio López Pascual

Senior Principal Software Engineer

Automotive Team

1

Virtio-gpu, who are you?

2

This is getting confusing

Virtio-gpu, who are you?

VirGL

VirGL2

Venus

DRM native context

gfxstream

Virtio-gpu, who are you?

3

Though I prefer calling them “personalities”

Virtio-gpu Contexts (I)

▸ linux/include/uapi/linux/virtio_gpu.h:

Virtio-gpu, who are you?

4

Though I prefer calling them “personalities”

Virtio-gpu Contexts (II)

▸ rutabaga_gfx/src/rutabaga_utils.rs:

Virtio-gpu, who are you?

5

Though I prefer calling them “personalities”

Virtio-gpu Contexts (II)

▸ rutabaga_gfx/src/rutabaga_utils.rs:

Virtio-gpu, who are you?

6

A three act story

How virtio-gpu became The Faceless Device

Virtio-gpu, who are you?

7

▸ EXECBUFFER

A three act story

How virtio-gpu became The Faceless Device

Virtio-gpu, who are you?

8

▸ EXECBUFFER

･ A unidirectional opaque transport.

A three act story

How virtio-gpu became The Faceless Device

Virtio-gpu, who are you?

9

▸ EXECBUFFER

･ A unidirectional opaque transport.

▸ F_RESOURCE_BLOB

A three act story

How virtio-gpu became The Faceless Device

Virtio-gpu, who are you?

10

▸ EXECBUFFER

･ A unidirectional opaque transport.

▸ F_RESOURCE_BLOB

･ Rings, queues, mapped FDs…

A three act story

How virtio-gpu became The Faceless Device

Virtio-gpu, who are you?

11

▸ EXECBUFFER

･ A unidirectional bidirectional opaque transport.

▸ F_RESOURCE_BLOB

･ Rings, queues, mapped FDs…

A three act story

How virtio-gpu became The Faceless Device

Virtio-gpu, who are you?

12

▸ EXECBUFFER

･ A unidirectional bidirectional opaque transport.

▸ F_RESOURCE_BLOB

･ Rings, queues, mapped FDs…

▸ Fences

A three act story

How virtio-gpu became The Faceless Device

Virtio-gpu, who are you?

13

▸ EXECBUFFER

･ A unidirectional bidirectional opaque transport.

▸ F_RESOURCE_BLOB

･ Rings, queues, mapped FDs…

▸ Fences

･ Pollable objects.

A three act story

How virtio-gpu became The Faceless Device

Contexts

14

▸ Serializes Vulkan commands.

･ Easier than GL, since it operates at a less abstract level.

▸ Makes heavy use of BLOBs.

▸ Use cases:

･ Project Borealis: games on Chromebooks

･ Podman Desktop: run GPU-accelerated containers on macOS

for LLM inference.

Serializing Vulkan

Venus

Contexts

15

From Vulkan to Metal

Podman with Venus on macOS

Linux VM (guest) macOS (host)

Application Mesa
(Rusticl/Zink/Venus) MoltenVK Metal Framework

Venus

Application

Contexts

16

From Vulkan to Metal

Podman with Venus on macOS

Linux VM (guest) macOS (host)

libkrun
Hypervisor.framework

GPU Memory
Data Buffer Shader

Buffer

Data Buffer

Shader
Buffer

Application
(Rusticl/Zink/Venus)

Injected into
the VM using

Hypervisor.framewo
rk

Shader
Buffer

Data Buffer

Contexts

17

▸ Drawing in the framebuffer isn’t always the most desirable approach.

･ Worse UI

･ Worse Performance

▸ But we need a way for apps running in the guest to talk to the

compositor in the host.

▸ Offers primitives to support a nested Wayland compositor

･ Replaces virtio-wl

A compositors game

Cross-domain

Contexts

18

▸ Serializes DRM ioctls!

･ Requires specific support in the Mesa driver.

･ Requires a dedicated controller in virglrenderer for each GPU

driver.

･ msm (Freedreno), amdgpu, intel (WIP), asahi (WIP)

▸ Use cases

･ Borealis?

･ Commercial games on Asahi Linux

Let’s go lower!

DRM native context

Contexts

19

I think we just need one more layer

Asahi Linux’s problem with Commercial Games

▸ Apple Silicon is ARM64, while most commercial games only provide

x86_64 binaries.

･ Use a (fast!) userspace x86_64 emulator.

▸ Asahi Linux is a 16K page distribution.

･ Run a 4K kernel in a VM.

Contexts

20

I think we just need one more layer

Asahi Linux’s problem with Commercial Games

▸ Apple Silicon is ARM64, while most commercial games only provide

x86_64 binaries.

･ Use a (fast!) userspace x86_64 emulator.

▸ Asahi Linux is a 16K page distribution.

･ Run a 4K kernel in a VM.

▸ VMs doesn’t have direct access to graphics.

･ Use DRM native context.

Contexts

21

Using the marvelous reverse-engineered Asahi GPU driver

DRM native-context + krun + fex-emu on Asahi Linux

DEMO

Contexts

22

▸ Asahi Lina’s Mastodon post:

･ https://vt.social/@lina/112524118075585601

▸ Asahi Lina’s Live Stream trying out games:

･ https://youtube.com/live/JT9a_MrFV18

https://vt.social/@lina/112524118075585601
https://youtube.com/live/JT9a_MrFV18

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

23

Red Hat is the world’s leading provider of enterprise

open source software solutions. Award-winning

support, training, and consulting services make

Red Hat a trusted adviser to the Fortune 500.

Questions?

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

24

Red Hat is the world’s leading provider of enterprise

open source software solutions. Award-winning

support, training, and consulting services make

Red Hat a trusted adviser to the Fortune 500.

Thank you

Contexts

25

▸ Encodes GL operations in the guest, decodes them in the host.

･ In the guest, it’s implemented as a Gallium driver in Mesa.

･ In the host, it’s supported by the virglrenderer library linked

against the virtio-gpu device implementation.

･ Written by hand

▸ Use case: run GPU-accelerated VMs pretty much everywhere.

The ones who started it all

VirGL and VirGL2

Contexts

26

▸ Auto-generates GLES and Vulkan calls.

▸ Was developed as part of Android Studio.

▸ AFAWK, AOSP is going to deprecate VirGL (no longer enabled by

default in the builds) in favor of GfxStream.

▸ It’s upstream status beyond Android is so-so.

▸ Multiple flavors:

･ GLES, VK, MAGMA?, COMPOSITOR?

Android’s preferred solution

GfxStream

