
TCG Plugin in Practice:
A Case of Microarchitecture Research

Akihiko Odaki
akihiko.odaki@daynix.com Daynix Computing Ltd.
odaki@rsg.ci.i.u-tokyo.ac.jp The University of Tokyo

1

mailto:akihiko.odaki@daynix.com
mailto:odaki@rsg.ci.i.u-tokyo.ac.jp
https://www.u-tokyo.ac.jp/
https://daynix.com/

Conventional TCG use cases

TCG: The CPU emulation engine of QEMU

Examples of conventional TCG use cases:

● Cross-development
(e.g., debugging Windows Arm64 on x86)

● Retro/hobby-computing (e.g., Amiga)

Common goal:

Emulate fixed hardware design fast
for software

2

https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/setting-up-qemu-kernel-mode-debugging-using-exdi
http://zero.eik.bme.hu/~balaton/qemu/amiga/

TCG for μarch research

Microarchitecture (μarch) research:

Optimizing designs of microprocessors (= μarch)

Our goal:

Simulate various CPU designs and evaluate their performance

Idea:

1. Generate software execution traces with a TCG plugin
2. Feed them to simulators modeling hardware designs

3

Why μarch?

Why research μarch?

To exploit more parallelism

Assumption: Moore’s Law

Transistors gets smaller
→ #transistors doubles for every 2 years

Slowing down a bit,
but has not stopped yet

4

https://ourworldindata.org/grapher/transistors-per-microprocessor

End of Dennard scaling

Old good days (~2006): Dennard scaling

1. Transistors gets smaller (Moore’s law)
2. The threshold current decreases
3. Raise clock to exploit the extra power budget

→ everything gets 40% faster
for each technology generation

No longer true: transistors too small result in
excessive current leakage

● Extra power consumption
● Causes subthreshold condition,

preventing lowering the threshold current

Fuchs, Adi

Fuchs, Adi

 Fuchs, Adi

 Fuchs, Adi

Fuchs, Adi

Adi Fuchs, 2019.

5

https://www.proquest.com/dissertations-theses/overcoming-limitations-accelerator-centric/docview/2303896029/se-2

Daniels220 at English Wikipedia, 2008. CC-BY-SA 3.0 Unported

Challenge of Amdahl’s law

Reminder: Moore’s Law is still alive; the
number of transistors is continuously
increasing.

Utilize extra transistors with Parallelism

Challenge: Amdahl’s law

Small part of execution that cannot be
parallelized bottlenecks the overall
performance.

6

https://commons.wikimedia.org/wiki/File:AmdahlsLaw.svg

Fighting with Amdahl’s law

Software Approaches:

● Multi-threading
● Vectorization

Hardware Approaches:

● Multi-core/SMT (a.k.a. hyper-threading)
● SIMD units
● Out-of-order execution

○ Instruction-level parallelization

Fight with Amdahl’s law
both in software and hardware

Software Hardware

Present requirements/
Optimize for

Provide features/
Optimize for

Maximize
Parallelism

7

Challenge in μarch Research

μarch is complex.

Dump of assembler code for function main:
 0x0000aaaaaaab02c0 < +0>: paciasp
 0x0000aaaaaaab02c4 < +4>: sub sp, sp, #0xd0
 0x0000aaaaaaab02c8 < +8>: stp x29, x30, [sp, #144]
 0x0000aaaaaaab02cc < +12>: add x29, sp, #0x90
 0x0000aaaaaaab02d0 < +16>: stp x19, x20, [sp, #160]
=> 0x0000aaaaaaab02d4 < +20>: adrp x19, 0xaaaaaaadf000
 0x0000aaaaaaab02d8 < +24>: mov x20, x1
 0x0000aaaaaaab02dc < +28>: ldr x3, [x19, #4064]

8

Naive:
Execute instructions

top to bottom

Educated:
Superscalar pipeline

Reality:
Speculate everywhere
Parallelize everywhere

Arm Neoverse V2 (Hot Chips 2023)

https://commons.wikimedia.org/wiki/File:Superscalarpipeline.svg
https://hc2023.hotchips.org/

Simulator in rescue

● A simulator estimates execution time and optionally power/area
● A researcher can omit details they don’t care about from the simulator
● e.g., floating-point arithmetics

○ Dark magic most people don’t understand
○ Simulator: just add some constant time latency

9

Trace-based simulation

Problems with simulation:

● Omitting details result in a non-functional system
● Simulating whole program execution takes too long (months)

Solution: generate execution traces with a functional emulator

● Traces characterize software
● A hardware simulator follows traces and sums up latency
● Only generate traces of regions of interest (ROIs)

○ SimPoint automatically finds ROIs

10

https://cseweb.ucsd.edu/~calder/simpoint/

Generating traces: conventional approaches

● Static instrumentation by compiler (LLVM)
○ Affects instruction stream

Not applicable for μarch research

● Dynamic instrumentation
○ Intel Pin
○ x86 is terrible for implementers
○ Hard to extend the instruction set

● Reference interpreters
○ Slow
○ Architecture-specific
○ Inflexible
○ Limited userspace support
○ Limited/complicated debugger setup

11

Generating traces with QEMU/TCG

● TCG is fast
● TCG supports various architectures

○ RISC-V
○ Even vector extension

● TCG has great userspace emulation
● QEMU works with GDB
● TCG plugins can generate

various information

12

Information simulators need

States included in traces:

● PC (program counter)
● Registers

○ I and Alex Bennée developed plugin APIs to read registers (available since 9.0)
● Memory

○ Only accessed data are available to plugins

Points to generate traces:

1. The beginning of the execution
○ To omit program loading

2. After system calls
○ To omit system call implementation

3. Each instruction
○ To omit every computation

13

https://gitlab.com/qemu-project/qemu/-/commit/8df5e27cf71c727a3e1bc9172819ec69eca32ff4

Case study: Sniper

● Settings:
○ Sniper simulator
○ RISC-V Linux userspace on x86
○ Benchmarks

■ SPEC CPU 2017
■ GAP Benchmark Suite

A graph benchmark suite

● Intel Pin
○ The default tracer
○ Incompatible with RISC-V

● Spike, the reference emulator of RISC-V
○ Too slow to run GAP benchmark suite

14

https://snipersim.org/w/The_Sniper_Multi-Core_Simulator
https://riscv.org/
https://www.spec.org/cpu2017/
http://gap.cs.berkeley.edu/benchmark.html

Case study: Sniper

Used two TCG plugins:

● Basic block vector generator for SimPoint (libbbv.so)
○ Uses conditional callbacks (available since 9.1) for fast execution
○ Upstreaming: [PATCH v3] contrib/plugins: Add a plugin to generate basic block vectors

(co-developed with Yotaro Nada)
● Sniper frontend for generating traces (libqemu-frontend.so)

○ Traces PC and registers for each instruction
○ Infers memory from registers

15

https://gitlab.com/qemu-project/qemu/-/commit/7de77d37880d7267a491cb32a1b2232017d1e545
https://patchew.org/QEMU/20240816-bb-v3-1-b9aa4a5c75c5@daynix.com/
https://mermaid.live/edit#pako:eNq1VE1v1DAQ_SuRD2hX2sSIG6FEolBxYdHCigvJqrIdxzEbf2A7iUrV_17b-UBFS8WFHKJ5nufneZOJ7wFRNQU5aDo1khYZl3z6WsnEP5hK0gpkzuXmhcRWv_nb-3ohPk-74oIlqHNvK3A83LyvQGIN8aB1TtscwnEcM6spyZRhkAvEqIWdYsrCQA_RZzTcHfeZlqwCxSr38d0hKi06lijnMEWCmkxSt0gxpNMgkrbK8F-ZHVixPSVpWiQdxxgPmVWT7xWWz_tZef9o-8vN_tuTQhl3HcIZUQL-pKJPtVE_KHERwBQaNMLhdfYyewU1STH3jQiZ22AilJ_AYqrfV1FurpHl5AqbAneKnEMweC1l7Pb0x-dcPMczG6Oko7Je3XuxSDhycVBcuml1QTFludAB2Cm3wnLjaX2HHFcyFBB32N9NvnzghUR5Ye3_t9Hyxi2OGhfMNG4u3kquqZmTMS7Xeo4RP53AuOT7Ekd5XCZw5Gd-O-XCDM_HCuoMJ3MvZ1Bu9lOwPYEd8IMsEK_9T3ofWBVwLRW0ArkPMbI-quSD56HeqeOdJCB3pqc7YFTPWpA3qLMe9bpGjn7giBkkFgqtuZ-R_XQFxJtgBzSS35US88aHRweIbYY

Case study: Sniper

Results:

● Succeeded in running GAP benchmark suite until end
● Passed 100% SPEC CPU 2017 validations with a few fixes

(upstreamed with 8.1.0)
[PATCH v2 0/6] linux-user: brk/mmap fixes

16

https://patchew.org/QEMU/20230802071754.14876-1-akihiko.odaki@daynix.com/

Open problem: μarch speculation

● Speculative execution
○ Triggered by branch prediction
○ Allows early execution of instructions following branches
○ Sometimes executes wrong instructions

● Prefetcher
○ Guess the region of memory the processor will access soon
○ Fills caches early
○ e.g., Indirect memory prefetcher

■ A modern, complex prefetcher
■ De-references pointers in an array (i.e., requires memory content)
■ Present in Apple M1+

17

μarch speculation matters

Not present in traces

Traces do not contain μarch details

Enables side/covert-channel attacks

● Speculative execution: Spectre
● Indirect memory prefetcher: GoFetch

Affects performance

● Prefetchers significantly improve
performance

● Wrong instruction execution after
mispredicted branches often fills caches
(behaves like prefetcher)

● Affects SMT

18

https://spectreattack.com/
https://gofetch.fail/
https://spectreattack.com/
https://gofetch.fail/

Simulating indirect memory prefetcher

Requires controlled memory read

● Needs to read memory not accessed in traces

Currently TCG plugins can only read registers and record accessed memory

● Dumping all memory may result in a huge file

GAP benchmark suite may consume 30 GB of memory

19

Simulating speculative execution

PC must be controllable

● Set PC to execute the wrong path

Needs checkpoint/restore

● Checkpoint before starting speculative execution
● Restore after the wrong speculative execution
● Also necessary to capture the region of interest (ROI)

20

Checkpoint/restore for simulation

● Normal checkpoint/restore
○ Requires huge amount of storage
○ Requires full-system emulation/virtualization
○ Slow

● Checkpoint/restore for speculative execution
○ Happens very frequently
○ No need to run system calls during speculative execution
○ The interval between checkpoint and restore is small (includes < 200 memory access insts.)

● Checkpoint/restore for the ROIs
○ Multiple ROIs

Needs to minimize storage usage

21

● μarch simulation poses unique requirements
● Let the simulator handle its own requirements
● libqemu: Removed in 2011, leaked too much internal details

/* install exception handler for CPU emulator */
{

 struct sigaction act;

 sigfillset(&act.sa_mask);
 act.sa_flags = SA_SIGINFO;
 // act.sa_flags |= SA_ONSTACK;

 act.sa_sigaction = host_segv_handler;
 sigaction(SIGSEGV, &act, NULL);
 sigaction(SIGBUS, &act, NULL);

}

// cpu_set_log(CPU_LOG_TB_IN_ASM | CPU_LOG_TB_OUT_ASM | CPU_LOG_EXEC);

env = cpu_init("qemu32");

cpu_x86_set_cpl(env, 3);

env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK;
/* NOTE: hflags duplicates some of the virtual CPU state */
env->hflags |= HF_PE_MASK | VM_MASK;

/* flags setup : we activate the IRQs by default as in user
 mode. We also activate the VM86 flag to run DOS code */

env->eflags |= IF_MASK | VM_MASK;

/* init basic registers */
env->eip = 0x100;
env->regs[R_ESP] = 0xfffe;
seg = (COM_BASE_ADDR - 0x100) >> 4;

cpu_x86_load_seg_cache(env, R_CS, seg,
 (seg << 4), 0xffff, 0);

cpu_x86_load_seg_cache(env, R_SS, seg,
 (seg << 4), 0xffff, 0);

cpu_x86_load_seg_cache(env, R_DS, seg,
 (seg << 4), 0xffff, 0);

cpu_x86_load_seg_cache(env, R_ES, seg,
 (seg << 4), 0xffff, 0);

cpu_x86_load_seg_cache(env, R_FS, seg,
 (seg << 4), 0xffff, 0);

cpu_x86_load_seg_cache(env, R_GS, seg,
 (seg << 4), 0xffff, 0);

Idea: QEMU as a library

22

https://gitlab.com/qemu-project/qemu/-/commit/e4aeadcb5685cdb421275025c5b22f530f830105

Idea: QEMU as a library

● Unicorn: out-of-tree QEMU fork
err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc);
if (err) {

 printf("Failed on uc_open() with error returned: %u\n", err);
 return;

}

// map 2MB memory for this emulation
uc_mem_map(uc, ADDRESS, 2 * 1024 * 1024, UC_PROT_ALL);

// write machine code to be emulated to memory
if (uc_mem_write(uc, ADDRESS, X86_CODE32, sizeof(X86_CODE32) - 1)) {

 printf("Failed to write emulation code to memory, quit!\n");
 return;

}

// initialize machine registers
uc_reg_write(uc, UC_X86_REG_ECX, &r_ecx);
uc_reg_write(uc, UC_X86_REG_EDX, &r_edx);
uc_reg_write(uc, UC_X86_REG_XMM0, &r_xmm0);
uc_reg_write(uc, UC_X86_REG_XMM1, &r_xmm1);

// tracing all basic blocks with customized callback
uc_hook_add(uc, &trace1, UC_HOOK_BLOCK, hook_block, NULL, 1, 0);

// tracing all instruction by having @begin > @end
uc_hook_add(uc, &trace2, UC_HOOK_CODE, hook_code, NULL, 1, 0);

// emulate machine code in infinite time
err = uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(X86_CODE32) - 1, 0, 0);

23

https://www.unicorn-engine.org/

Idea: QEMU as a library

● Exposing full features of QEMU as a library is impractical
○ Device emulation, userspace emulation, etc.
○ Too many interfaces
○ Too unstable interfaces

● A μarch simulator only requires to model a processor
○ Specifying processor
○ Mapping memory with RWX
○ Reading/writing registers; a requirement shared with gdbstub/TCG plugins
○ Executing instructions
○ Trapping; allows implementing application-specific behaviors

● Potentially useful for compiler research, reverse engineering, etc.

24

Conclusion

● μarch matters
○ Cope with Amdahl’s law by exploiting transistors we get with Moore’s law

● Trace-based simulation significantly aids μarch research
● QEMU/TCG is ideal for trace-based simulation

○ Fast
○ Rich features

● μarch speculation remains as an open problem
● Time to rethink QEMU as a library?

○ Hide internal details and only provide features commonly needed
○ Reuse gdbstub/TCG plugin code/interface
○ Not only useful for μarch simulation but also for software research and reverse engineering

25

Acknowledgement

● Daynix Computing Ltd supported:
○ The development of register read feature of TCG
○ Linux userspace emulation fixes
○ The basic block generator development
○ The travel to KVM Forum
○ And this presentation

● The presented μarch research was supported by JSPS KAKENHI Grant
Number JP-20H04153.

26

