
Qemu support for 
Windows on Arm

Mohamed Mediouni



About me

• EC2 @ AWS

• My opinions are mine

Qemu support for Windows on Arm

2



AGENDA
A primer on what’s going on under the hood in WSL2

Hyper-V out-of-process device emulation: a public API

Windows Hypervisor Platform on Arm64

SEPTEMBER 23RD, 2024

Q
E

M
U

 S
U

P
P

O
R

T
 F

O
R

 

W
IN

D
O

W
S

 O
N

 A
R

M

3



WSL2 AND WSA
HCS and virtio device emulation



Overview

5

Hyper-V

Host Compute Service

vmwp (VMM process)

WSL Service

Out-of-process device 

emulation

Isolated and 

untrusted

SYSTEM

SYSTEM

User context
Instantiated 

through COM

Another out of process 

device emulation 

process

vmdevicehost



File sharing

• virtiofs emulation is not part of WSL2. It is provided by 
Windows in v9pfs.dll.

• 8GB virtiofs BAR for caching.

• Can be initialised via HCS APIs (Plan9 device type notably)

• For Windows Sandbox/Windows guests, VSMB is used 
instead.

6



wsldevicehost

• Component written in Rust. This is part of the WSL2 and 
WSA packages. There’s also an implementation of virtio-net 
present in there, and virtio-pmem too.

• This component uses vmdevicehost, but does not leverage 
vmvirtio.dll, which is a private DLL which implements 
common virtio infrastructure.

7



virtio-gpu

• Part of the Windows Subsystem for Android.

• gfxstream_backend.dll, loaded from WsaClient.exe.

• Backed by gfxstream, supported across GPU vendors.

• Completely separate from the vGPU infrastructure on WSL2.

• Windows Subsystem for Android did have an experimental 
WSL2-like vGPU infrastructure for it, but that never reached 
production status. WSA itself is currently deprecated.

8



HOST COMPUTE 
SERVICE



Multiple types of Hyper-V VMs

Hyper-V virtual machines HCS virtual machines
Windows Hypervisor 

Platform

Stateful Stateless

Restricted to Professional 

SKUs upwards.

All SKUs.

Close to no good public 

documentation – a lot of 

trial and error.

Actually, easier to get 

started with.



HCS

• Supports both virtual machines and containers (Silos in NT 
parlance)

• JSON given with settings (which are ephemeral)

• Support for custom I/O devices.

• https://github.com/M2Team/NanaBox is a good starting point 
to start from.

• Documented to some extent, but the docs aren’t easy to 
parse & lack of good samples/guides.

11

https://github.com/M2Team/NanaBox


HYPER-V OUT-OF-
PROCESS DEVICE 

EMULATION

Security model… using COM to start the virtual devices



COM

• Device emulation for virtio devices is done out of process via 
the HCS device virtualization APIs.

• dllhost.exe process, with using COM to start device 
emulation in a different user context in a secure manner.

• Those security measures are at the end quite optional if you 
run as administrator, which made experiments much easier 
to get started with.

13



vmvirtio

• A small layer on top of vmdevicehost.

• Undocumented API – but the virtiofs implementation is built 
on top of it

14



vmdevicehost

• Provides an API for access to guest memory.

• For the config space: those are blocking reads/writes

• A doorbell design where it’s possible to trap writes to parts 
of the BARs. 

• For trapped writes: the write is not done unlike the virtual 
PCIe devices implementations in some other places. Has to 
be done manually if wanted.

• Suitable for implementing virtio and nvme. 

15



Supporting it in Qemu

• Prototype of a qemu-oopdevice binary, but that does not 
cover using the stack with COM security enabled.

• Would it be worthwhile to continue on this road or are there 
no big benefits in using Hyper-V’s VMM to make it 
worthwhile?

• Should we have out-of-process emulation of arbitrary* PCIe 
devices on Linux?

16



WINDOWS HYPERVISOR 
PLATFORM



Windows Hypervisor Platform

• An API to support third-party VMMs on Windows, while still 
running on top of Hyper-V.

• One VM allowed per process.

• On arm64: in preview since Windows 11 version 24H2

• On x86: has been there since quite a while now, and already 
supported by Qemu, VirtualBox and a few others

• Documentation is not ideal either for this one, but things are 
quite a bit easier to figure out.

18



GIC

• State on 24H2 (26100): no way to move the GIC MMIO 
address ranges to another location.

• Worked around for those builds via hacking in to not overlap 
with the GIC location in conventional Hyper-V VMs.

• Not an upstreamable configuration – except if we’re going to 
do an -M hyperv.

• Addressed in a prerelease build – for which the SDK not 
publicly available yet.

• GICv3, with no ITS

19



Hypercalls

• Always exposes Hyper-V hypercalls.

• The PSCI implementation in Hyper-V is always used.

• Hyper-V VMs have virtio support despite not having an ITS 
for MSI-X, with a custom irqchip implemented inside of the 
Hyper-V PCIe code. 

• Consequence: no MSI-X devices are currently functional with 
Qemu on Windows Hypervisor Platform for arm64. WHPX 
has WHv vPCI APIs, but I didn’t start using those yet. 

20



Future plans

• Getting MSI-X working so that virtio devices become 
functional.

• Writing a proper -M hyperv target to be enable external use 
before the new SDK becomes public.

• Publish an RFC

21



SEPTEMBER 23RD, 2024 22

Q
e

m
u

 s
u

p
p

o
r
t
 f

o
r 

W
in

d
o

w
s
 o

n
 

A
r
m

THANK YOU
mediou@amazon.de


	Slide 1: Qemu support for Windows on Arm
	Slide 2: About me
	Slide 3: Agenda
	Slide 4: Wsl2 and WSA
	Slide 5: Overview
	Slide 6: File sharing
	Slide 7: wsldevicehost
	Slide 8: virtio-gpu
	Slide 9: Host compute service
	Slide 10: Multiple types of Hyper-V VMs
	Slide 11: HCS
	Slide 12: Hyper-V out-of-process device emulation 
	Slide 13: COM
	Slide 14: vmvirtio
	Slide 15: vmdevicehost
	Slide 16: Supporting it in Qemu
	Slide 17: Windows hypervisor platform
	Slide 18: Windows Hypervisor Platform
	Slide 19: GIC
	Slide 20: Hypercalls
	Slide 21: Future plans
	Slide 22: Thank you

