

The KVM Backend for VirtualBox

Julian Stecklina, Martin Messer KVM Forum 2024

Disclaimer 1

VirtualBox is a trademark owned by Oracle. This project has no affiliation with Oracle.

Disclaimer 2

This is teamwork with Thomas Prescher, Stefan Kober, Sebastian Eydam and many other colleagues at Cyberus. We are just the lucky ones to present. ©

Outline

- Introduction: Cyberus Technology
- Why KVM for VirtualBox?
- Zoom into Nested Virtualization Issues
- Summary

Cyberus Technology: An Overview

About us

- Founded 2017
- Self-funded, boot-strapped deep-tech firm
- Profitable, no debt, no VC
- HQ: **Dresden**, ~25 employees
- Background:

Claim to fame

VirtualBox

approval

Cloud Hypervisor

Open-Source Engagements

Meltdown & Spectre SC discovery

prime IT security provider

Open-Source release of KVM backend for

Engagement for virtualization stack BSI

• Long term virtualization partner for Germany's

- Cloud Hypervisor / VirtualBox
- Linux KVM
- NixOS / nixpkgs

Hardware Test Automation

SoTest: On-HW synchronous Test Automation

- Enables agile SW product releases in virtualization technology development
- Short feedback cycles
- Discovery of functional and quality issues
- Automatic execution of all SW tests, on all OS's on all HW and platform variants on every code change

See our other talk:
Automated Hypervisor Testing and

Benchmarking

Hardware Orchestration and Testing

- Automated, remote, scalable
- Terminal Server
- Multi-Monitor Testing
- Creative Low-Level Solution

What is VirtualBox?

- A user-friendly virtualization software
 - Broad host and guest operating system support
 - No fiddling: Runs everything from DOS to Linux to Windows 11
- Powerful <u>Guest Integration</u>
 - Dynamic display resizing
 - Clipboard integration
 - Shared Folders
 - Drag'n'drop of files
- Great out-of-the-box experience
- Lots of users!

Relation to Qemu/Libvirt/Gnome Boxes/virt-manager...

"Bazaar"

"Cathedral"

VirtualBox Issues

- VirtualBox ships their own "Type 2" (hosted) hypervisor
 - Linux kernel module vboxdrv
 - Historically had <u>quality</u> issues.
 - Takes care of lots of emulation tasks in the kernel.
 - Can't use at the same time as KVM.
- Third-party kernel modules are unpopular...
 - Need to use <u>DKMS</u> ...
 - Users don't like them.
 - OS vendors don't like them.

-> Get rid of vboxdrv!

KVM Instead?

- Large relevant feature set!
 - APICv/AVIC, Hyper-V enlightenments, ...
- Robust security
 - Vulnerabilities tend to be in less used / new parts
 - AMD SEV, Nested Virtualization, ...
 - Guest escapes using KVM bugs are rare!
- Works on all Linux versions
 - It's enabled on all Linux distros
 - Even with kernel hardening (grsecurity/PaX)
 - Basic feature set is stable for a long time

How do we marry VirtualBox and KVM?

VirtualBox Backends

- VirtualBox has multiple backend types
 - HM their own hypervisor (vboxdrv on Linux/Solaris/BSD/Windows)
 - NEM "Native Execution Manager", relies on default hypervisor of the platform
- VirtualBox includes proof-of-concept NEM backends for
 - Hyper-V
 - MacOS
 - KVM
- But disabled for Linux by default, because incomplete/broken...

Fixing the KVM Backend

We invested the time to make it awesome!

- Making it work
 - Fixed Interrupt handling
 - Fixed Timeout handling
- Making it fast
 - Using KVM's Split-IRQCHIP feature
 - Using KVM's Hyper-V enlightenments
 - SYNIC / STIMER
- No time for all, our focus today: **Nested Virtualization Support**
 - Enable CPUID VMX bit, whitelist VMX MSRs and be happy?

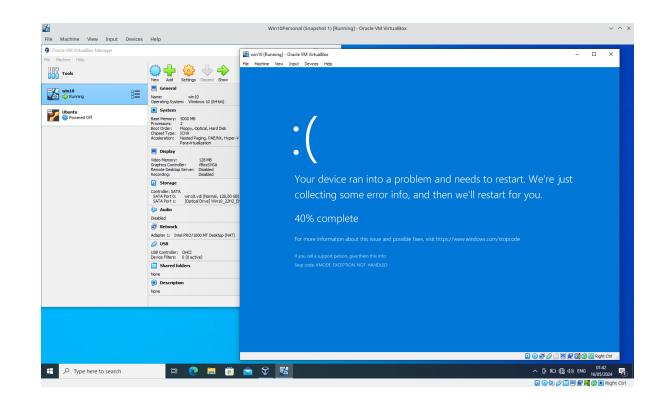
Deep Dive: Nesting Virtualization with the KVM Backend

Quick Recap: Terminology

Mysterious Crashes in nested VMs?

Windows crashes during boot due to kernel exceptions.

Only occurred with:


- Nested VMs
- KVM backend for VirtualBox
- Windows as nested VM

Problematic code: TLB Flush for global pages

```
mov rax, cr4 ; Get CR4
mov rcx, rax ; Remember the old value

btc rax, 7 ; Toggle CR4.PGE
mov cr4, rax ; #GP! <- Shouldn't happen!

mov cr4, rcx ; Restore old value</pre>
```

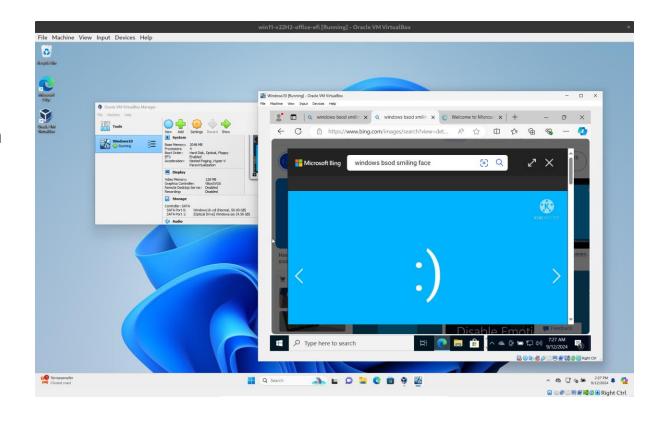

Guest Tests to the Rescue!

- We developed a set of low-level virtualization tests.
 - Open Source: https://github.com/cyberus-technology/guest-tests
 - Originally regression tests for our own microhypervisor.
 - Tests interrupt injection, VMX, ...
 - Overlap with KVM Unit Tests.
- We reused nested virtualization tests to reproduce the issue.

Root Cause: CR4 leaks from L1 to L2

- When a signal causes an exit during L2 operation, the struct kvm_run contains the L2 state.
 - We use signals to interrupt vCPU for timer events.
- VBox always marks CR4 as dirty
 - KVM_SET_SREGS with unchanged CR4
 - o Inefficient but no problem?
- KVM writes the L1 CR4 value to L2 CR4
 - Unexpected!
- Result: L1 CR4 leaks into L2
 - Guest sees CR4.VMXE
 - O MOV EAX, CR4; MOV CR4, EAX -> #GP fault
- Similar issues in Qemu/KVM
 - o savevm triggers the issue (qemu#2582)

```
test case: test tinivisor cr4
[INF main.cpp:176] CR4 is: 20
[INF main.cpp:176] CR4 is: a0
[INF main.cpp:176] CR4 is: 20
[INF main.cpp:176] CR4 is: a0
. . .
[INF main.cpp:176] CR4 is: 20
[INF main.cpp:176] CR4 is: a0
[INF main.cpp:176] CR4 is: 20
[INF main.cpp:183] Invalid cr4: 2020
Assertion failed @ test/quest/tinivisor/main.cpp:185
```


Workaround: Do what Qemu does

- Marking unchanged control registers as dirty in struct kvm_run causes the problem
- Qemu: Updates to Control Registers only on changed values
- We changed the behavior accordingly
 - But doesn't seem like a robust solution!

Towards a Better Solution: API Changes

- Initial patch submission failed, but we got good discussions on the mailing list
- Proposed change in a second try:
 - Addition of the KVM_RUN_X86_GUEST_MODE flag in struct kvm_run
 - Flag indicates the layer of execution
 - Got accepted for Linux 6.11 (just released!)
- Relation between API Changes and root cause:
 - Detect layer of execution
 - Update state according to execution layer

Takeaways: KVM API

- First large KVM project after years of experience with other virtualization APIs
- KVM API is historically grown
 - Need to read KVM/Qemu source code to understand
 - Sprawling interrupt injection API
 - Violates intuitive API assumptions
 - Marking unchanged values as dirty = no-op
 - KVM_GET_LAPIC syncs PIR to IRR non-atomically
- Not clear how to improve Ideas welcome!
 - Documentation improvements
 - Is there a path to simplifyingg the API?

KVM Backend Status

- It works!
- Compute performance of KVM backend is competitive with Vanilla VBox!
 - Either parity or faster!
 - Legacy IO (SATA) is slower though! (Because it's emulated in vboxdrv.)
- Supports:
 - Tested and stable on AMD and Intel CPUs (with XSAVE support)
 - Nested Virtualization on Intel
- Support VFIO GPU passthrough + virtio-gpu
 - SR-IOV GPU passthrough for Intel Xe GPUs!
- Supports all (almost all) VirtualBox convenience features
 - Guest Integration

VirtualBox KVM Blog Series

We blogged about our VirtualBox KVM adventure.

- 1. Overview:
 - https://cyberus-technology.de/articles/vbox-kvm-public-release
- 2. Technical Deep Dive
 - https://cyberus-technology.de/articles/vbox-kvm-deep-dive
- GPU Virtualization:
 - https://cyberus-technology.de/articles/vbox-kvm-sriov
- 4. Simple SR-IOV Setup
 - https://cyberus-technology.de/en/articles/simplify-your-sr-iov-setup-a-guide-to-nixos-modules-and-specializations

Summary

- Our patchset allows using VirtualBox without out-of-tree kernel modules!
 - Find it on Github: cyberus-technology/virtualbox-kvm
 - Sponsor us!
- The KVM API is for the brave:
 - Closely tied to Qemu.
 - No way around reading KVM and Qemu source.
 - Happy to talk about improvement paths!
- Packages available!
 - NixOS / Arch / Gentoo
- Commercial Support is available!
 - Virtualization / Nix / NixOS / Testing
 - https://cyberus-technology.de/contact

Company:

- Blog: cyberus-technology.de/articles
- GitHub: github.com/cyberus-technology
- Twitter: <u>@CyberusTech</u>
- Mastodon: https://mstdn.business/@cyberus

Talk to us for virtualization-related consulting!

How to Use It?

gentoo linux™

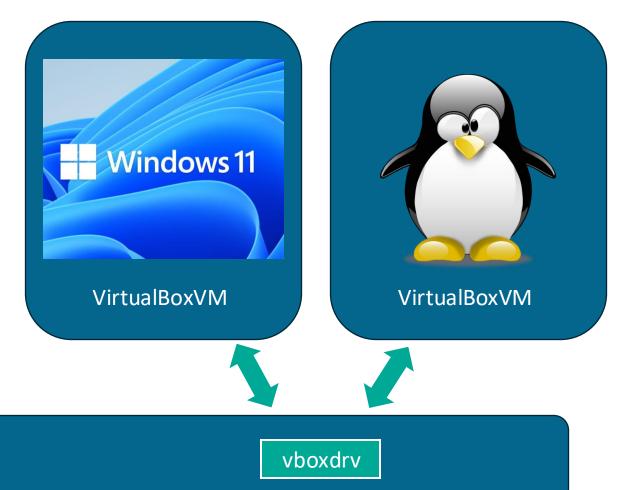
We use this daily!

There are packages available:

- ArchLinux AUR: virtualbox-kvm
- Gentoo: app-emulation/virtualbox-kvm
- NixOS 24.05/unstable: pkgs.virtualboxKvm
 - virtualization.virtualbox.host.enable = true;
 - virtualization.virtualbox.host.enableKvm = true;

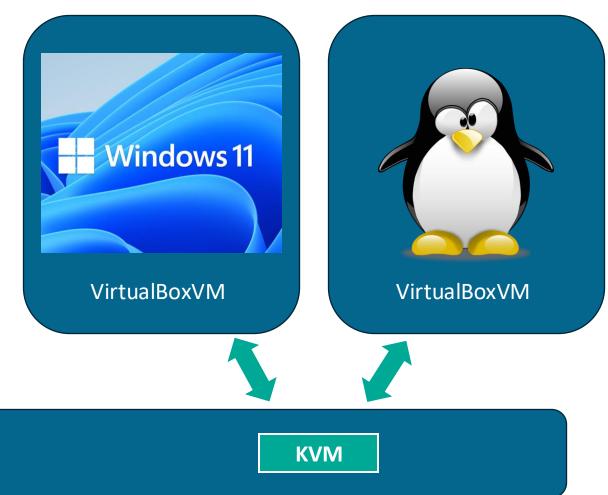
Build instructions in our README on Github:

https://github.com/cyberus-technology/virtualbox-kvm


Some features are incomplete/missing compared to Vanilla Vbox:

Advanced Networking

High-Level VirtualBox Architecture


Linux Kernel

KVM Backend for VirtualBox

Same user experience!

Linux Kernel

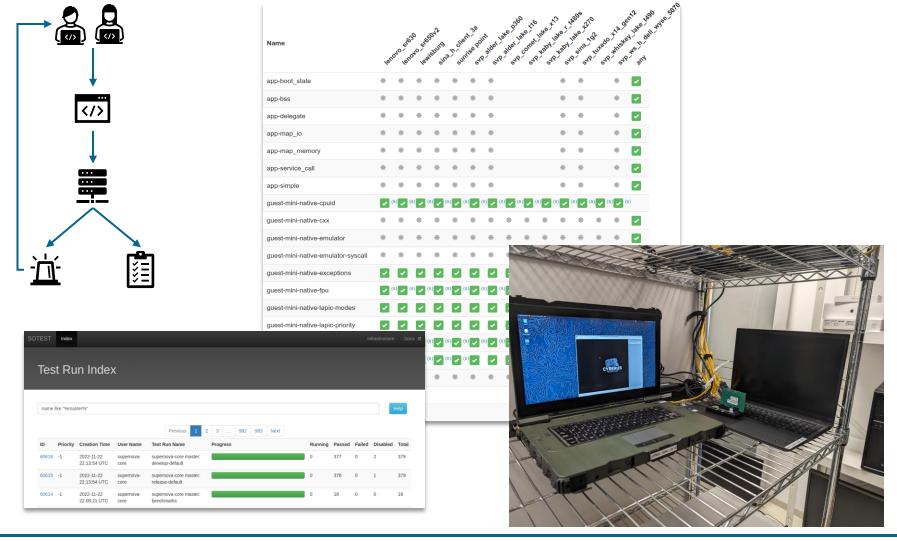
History of VirtualBox

- Born at InnoTek GmbH in Germany
 - First open source release in 2007
 - First full-featured open source virtualization solution
 - Since then, acquired by Sun and then Oracle
- No mature OS-level Support for Virtualization at the time
 - AMD-V, Intel VT born around the same time!
 - KVM merged into Linux 2.6.20 in 2007
 - MS Hyper-V shipped in 2008
- So VirtualBox just did its own thing.

Source: <u>LinuxUser 04/2007</u>

Open Source Edition vs Extension Pack

Open Source Edition

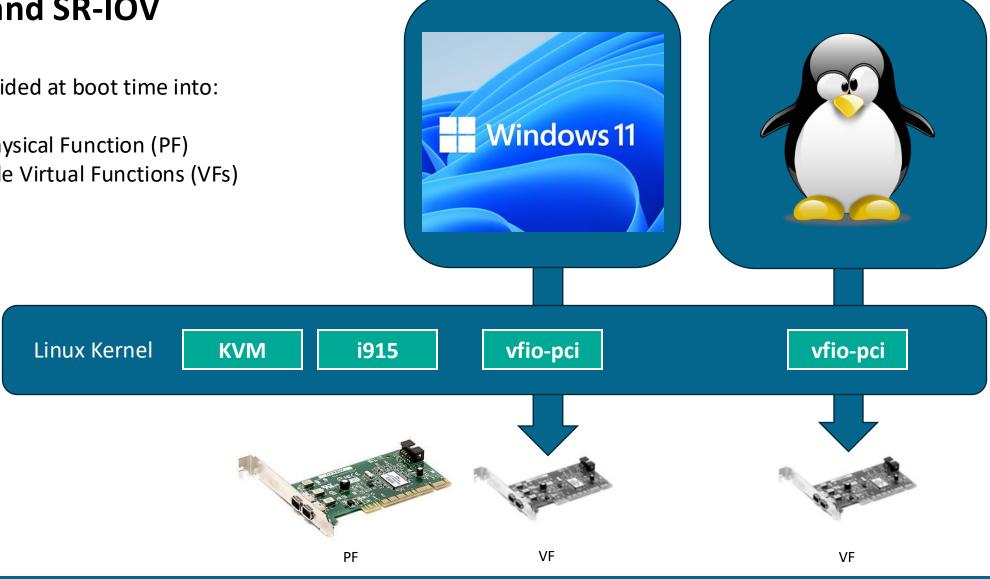

- GPLv3 (mostly) with some clarifications
- Kernel modules
 - vboxdrv (the actual hypervisor)
 - ...
- Qt GUI for configuration and running VMs
- CLI
- Large Feature Set
 - PIIX3/ICH9 Host Bridge
 - Large set of network cards, storage controllers etc
 - BIOS and UEFI boot
 - TPM / Secure Boot
- Hassle-free Windows 11 experience

Extension Pack

- Plugs into VirtualBox to provide more features
- Proprietary Software
 - Free for personal use (check the license!)
- Additional <u>Features</u>
 - Remote Display
 - USB3 (moved to OSE!)
 - Webcam Passthrough (moved to OSE!)
 - Guest Network Boot
 - Disk Image Encryption

 - ..

Avoiding Quality and Performance Regressions



GPUs and SR-IOV

GPU is divided at boot time into:

- One Physical Function (PF)
- Multiple Virtual Functions (VFs)

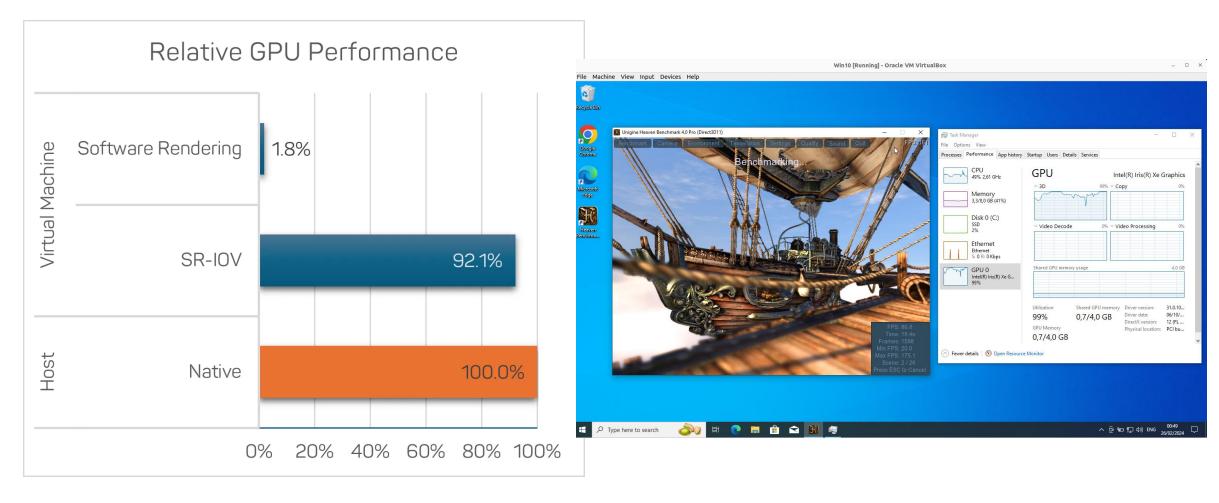
GPU Virtualization: Availability

Available from Intel 12th Core processors onwards.

> sudo lspci -v -s 00:02.0
00:02.0 VGA compatible controller: Intel Corporation AlderLake-UP3 GT2 [Iris Xe Graphics]

Capabilities: [320] Single Root I/O Virtualization (SR-IOV)

Kernel driver in use: i915


Kernel modules: i915

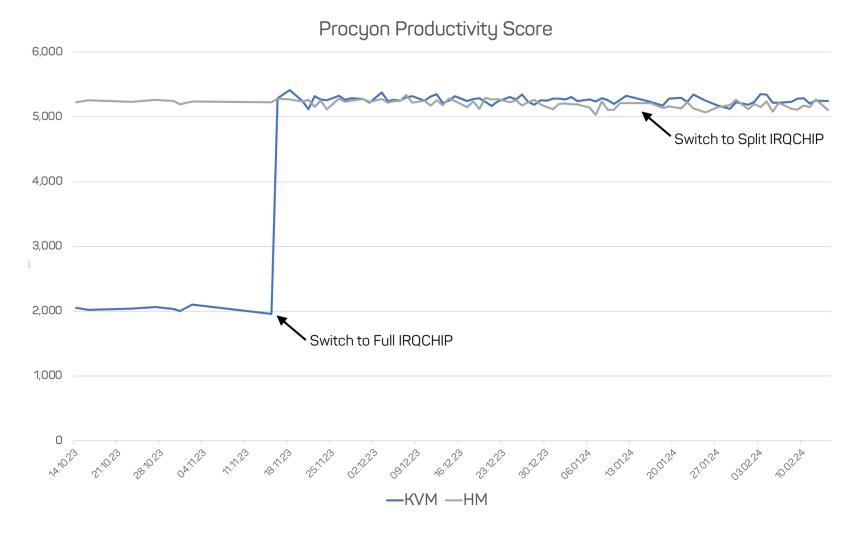
GPU Virtualization

Details: https://cyberus-technology.de/articles/vbox-kvm-sriov

Upstreaming Status: Intel Xe Driver

- Required features are not in Intel i915 driver
 - Need to use Intel Linux 6.6 LTS branch
- Intel works on a new driver for new hardware
 - Designed for Tiger Lake and up
 - Might be enabled by default for Intel Lunar Lake?
 - Will carry SR-IOV code
- Experimental version ships in Linux 6.8
 - Not enabled by default

Performance



Disk Speed SEQ128K Q32T1 RD						
Machine Name	Windows 11 SATA	Windows 10 SATA	Windows 11 NVMe	Windows 10 NVMe		
svp_whiskey_lake_t490	0.990	0.994	0.997	0.998		
svp_raptor_lake_t16	1.16	1.09	0.974	0.962		
svp_kaby_lake_r_t480s	0.865	0.875	0.991	0.986		
svp_comet_lake_x13	0.997	0.995	1.00	1.00		
svp_alder_lake_t16	1.11	1.10	0.990	0.957		
svp_alder_lake_p360	0.998	0.999	0.999	0.999		
coffee_lake_rw14	1.01	1.02	0.992	0.996		

Disk Speed RND4K Q1T1 RD						
Machine Name	Windows 11 SATA	Windows 10 SATA	Windows 11 NVMe	Windows 10 NVMe		
svp_whiskey_lake_t490	1.29	1.25	0.939	0.937		
svp_raptor_lake_t16	1.06	1.07	0.750	0.748		
svp_kaby_lake_r_t480s	1.22	1.20	0.929	0.921		
svp_comet_lake_x13	1.25	1.24	0.956	0.957		
svp_alder_lake_t16	1.11	1.09	0.728	0.715		
svp_alder_lake_p360	1.13	1.12	0.686	0.691		
coffee_lake_rw14	1.37	1.33	0.992	0.967		

Performance

