
K
V

M
 Forum

 20
24

1

Code refactoring and new frontiers

in device virtualization

Unleashing VFIO’s
Potential

Alex Williamson

VFIO Maintainer

Device assignment into virtual machines

KVM Forum 2016, “An Introduction to PCI Device Assignment with VFIO”
http://www.linux-kvm.org/page/KVM_Forum_2016

2

VFIO Refresher

http://www.linux-kvm.org/page/KVM_Forum_2016

The VFIO Ecosystem
“Legacy” VFIO

3

● Regions: segments of device fd

● Access to device resources

● Interrupts provided via eventfd*

DMADevices

● VFIO IOMMU backends

● Configured through container

Containers, Groups, and Devices

● Groups: one or more devices

● Container: shared IOMMU context

● Device access in protected context

* Not pictured

4

Agenda: ▸ Live Migration

▸ Variant Drivers

▸ IOMMUFD

5

▸ VFIO protocol developed to support device live migration

▸ Version 1 developed as a region based protocol

･ Data read and written through defined offset of device fd

･ No restrictions on device state transitions

･ Never adopted by in-kernel drivers

･ Considered too complicated, removed

▸ Version 2 developed as a streaming protocol

･ New file descriptor generated for migration session

･ Finite state machine defining fixed arcs through states

VFIO Live Migration

6

VFIO Live Migration Minimal State Machine

RUNNING STOP_COPYRESUMING

Init/ResetRestoring session Saving session

ERROR STOP

New data file descriptors are created
on transitions into Saving and
Restoring sessions. Invalidated on exit
from session. Device state is
streamed through data fd.

Any fault during transition
may enter the ERROR state.
Error state is only exited via
device reset.

7

VFIO Live Migration Minimal State Machine + P2P

STOP

RUNNING STOP_COPYRESUMING

ERROR

Init/ResetRestoring session Saving session

RUNNING_P2P

█ P2P (Peer-to-Peer): Device
must accept incoming DMA but
may not initiate.

Unsupported states
are skipped.

8

VFIO Live Migration Minimal State Machine + P2P + Pre-Copy

STOP

RUNNINGRESUMING

ERROR

Init/ResetRestoring session Saving session

RUNNING_P2P

STOP_COPY

PRE_COPY

PRE_COPY_P2P

Pre-copy info ioctl on data fd
indicates initial and dirty bytes
available.

█ Pre-Copy support reduces
downtime during STOP_COPY
█+█=█ Pre-Copy + P2P

9

▸ Dirty page tracking required, otherwise all memory within device

AddressSpace must be assumed perpetually dirty from DMA

▸ Guest memory can be rapidly dirtied by device DMA

･ PCIe 6.0 x16: 128GB/s

▸ VFIO Device feature ioctls allow device-level dirty page tracking

･ Requires devel-level support exposed by variant driver

･ QEMU specifies IOVA range(s) for tracking

･ Reported as bitmap and merged with CPU dirty bitmap

VFIO Live Migration Dirty Page Tracking

10

▸ In-kernel support for:

･ NVIDIA (née Mellanox) mlx5 (v5.18)

･ HiSilicon ACC (v5.18)

･ AMD PDS (v6.6)

･ Intel QAT (v6.10)

▸ Out-of-tree kernel support for:

･ NVIDIA vGPU

▸ QEMU support for v2 migration: v8.0

･ Dirty Tracking: v8.0

･ Pre-Copy: v8.1

･ P2P: v8.2

VFIO Live Migration Status

11

The vfio-pci module is refactored to enable device specific functionality:

▸ A separate vfio-pci-core module provides default implementations

▸ The vfio-pci module becomes the default variant driver

▸ Device specific variant drivers provide new functionality

･ Migration: mlx5-vfio-pci, hisi-acc-vfio-pci, pds-vfio-pci, qat-vfio-pci

･ BAR manipulation: nvgrace-gpu-vfio-pci

･ Emulated virtio-legacy support: virtio-vfio-pci

Where does all this device specific code live?

12

$ grep vfio_pci: /lib/modules/`uname -r`/modules.alias

alias vfio_pci:v*d*sv*sd*bc*sc*i* vfio_pci

alias vfio_pci:v000015B3d0000101Esv*sd*bc*sc*i* mlx5_vfio_pci

alias vfio_pci:v00001DD8d00001003sv*sd*bc*sc*i* pds_vfio_pci

…

Selecting a vfio-pci variant driver

▸ vfio_pci alias is added for drivers

･ Denotes a vfio-pci compatible PCI driver

▸ Userspace picks the driver requiring the fewest wildcards

▸ Supported with <hostdev managed=”yes”> in libvirt since v10.0

13

▸ VFIO Mediated Devices (mdev) is still available

･ More aligned with “software defined” assignable devices

▸ mdev continues to be used for legacy vGPU solutions

･ Also ccw and ap devices on s390x

▸ vfio-pci variant drivers expected to align better where assignable

device has IOMMU support

･ mdev dropped concept of an IOMMU backing device (v5.16)

▸ Transition from mdev entails hurdles for users

･ Different methods for configuring devices

･ No mdevctl for vfio-pci variant drivers

vfio-pci variant vs mdev

14

▸ Intended to provide a shared subsystem for mapping devices and memory

through the IOMMU from userspace

▸ Support for advanced IOMMU features

･ page faults, error reporting, nested paging, etc…

▸ Initial use cases targeted to support VFIO and VDPA

▸ Intends to replace vfio IOMMU backends, ex. vfio-iommu-type1

･ Currently not accepting new functionality directly into type1

▸ Provides a device level interface vs vfio group level interface

･ IOMMU group constraints are still enforced

･ IOMMU group is not a fundamental object of the API

IOMMUFD

15

▸ The VFIO API has a model of containers and groups, where the

user sets a container for the group, thereby establishing the IOMMU

context for the group, after which devices are made available

through the group

▸ The IOMMUFD API has a model where devices are bound to an

iommufd* instance, allowing an IO Address Space (IOAS) to be

defined within the instance, and devices are attached to an IOAS,

making the device fully accessible

Flow comparison

* Note uppercase IOMMUFD describes the subsystem while lowercase iommufd describes an instance

16

▸ New device access model for use with IOMMUFD

▸ Device file descriptor is directly opened by user

･ vfio-dev attribute in sysfs provides device file association

▸ Physical access is restricted until iommufd bind operation

▸ Runtime exclusion relative to VFIO legacy group API

▸ VFIO cdev support added in Linux v6.6

Introducing the VFIO character device (cdev)

17

▸ IOMMUFD can track pinned pages across multiple IOAS within the same

iommufd, solving duplicate locked page accounting of type1

▸ Direct access to VFIO cdev + multiple IOAS per iommufd enables a QEMU model

that supports passing file descriptors via SCM_RIGHTS

▸ IOMMUFD provides a VFIO compatibility mode by linking device files

･ Intended to ease removal of VFIO IOMMU backends

▸ Provides an interface for IOMMU-based dirty page tracking

･ Ubiquitous support where available in system IOMMU hardware

IOMMUFD Notable Features

18

▸ IOMMUFD will eventually replace VFIO IOMMU backends

･ Deprecation process has not officially begun

･ Compatibility interfaces should make this transparent

･ IOMMUFD currently has a temporary feature gap for DMA

mapping device memory, ie. no peer-to-peer DMA support

▸ Kernel support added in v6.2

▸ QEMU support added in v9.0

･ New iommufd object, vfio-pci device iommufd= parameter

▸ libvirt support in progress

IOMMUFD Status

19

IOMMUFD Status

https://lpc.events/event/18/contributions/1789/attachments/1460/3100/LPC2024_iommufd.pdf

20

▸ Building PCI config space in the VMM

▸ Exporting MMIO via dma-buf (also for IOMMUFD P2P mappings?)

▸ QEMU multi-fd migration

▸ IOMMUFD nested page tables, generic page tables, faults to

userspace, process address spaces, …

Ongoing work…

▸ Cédric Le Goater is now the primary QEMU VFIO maintainer

And a new recruit!

K
V

M
 Forum

 20
24

21

Questions?

K
V

M
 Forum

 20
24

22

Thanks!

