Beneath the Surface: Analyzing Nested CVM Performance on KVM/QEMU and Linux Root Partition for Microsoft Hyper-V/Cloud-Hypervisor

Muminul Islam Jinank Jain Linux Systems Group - Microsoft

Microsoft Hypervisor Virtualization Stack

Windows Root Partition

Microsoft Hypervisor

Linux Root Partition

Microsoft Hypervisor

Linux MSHV Virtualization Stack

LKML: https://lore.kernel.org/lkml/1692309711-5573-1-git-send-email-nunodasneves@linux.microsoft.com/

Confidential VMs on KVM/QEMU vs MSHV/CH

Independent Guest Virtual Machine (IGVM)

- A virt stack agnostic way to package the launch information for a guest VM into a single file
- Consists of an ordered list of directives with accompanying data specifying how the virt stack should load the guest
 - Note the ordering allows us to create stable, signed launch measurements for SNP, etc.
- Think of it like ELF/PE for VM launch
- Open source format published on Github and crates.io:
 - <u>igvm_defs</u> crates.io: Rust Package Registry
 - igvm crates.io: Rust Package Registry

CloudHypervisor changes to support CVM

Cloud-Hypervisor changes

· IGVM parser

- $\cdot\,$ Build on top of open-source crates like IGVM
- Parse the IGVM file and load into guest memory
- Performs SEV-SNP specific operations like handling CPUID, secrets pages etc.

· GHCB exit handling

- MSHV specific VCPU run adaptation
- GHCB/DoorBell page registration
- $\cdot\,$ MMIO, IoPort exits handling

Cloud-Hypervisor changes, Cont..

Virtio-thread adaptations

- $\cdot\,$ Pages are not accessible for VMM to process IO
- $\cdot\,$ VMM requests hypervisor to access the pages
- $\cdot\,$ Caching of accessed pages
- $\cdot\,$ Revocation of the pages from the cache

Performance comparison between

Linux/KVM/QEMU vs

Linux/MSHV/CloudHypervisor

Performance test setup

Network Throughput

· Hardware Setup

- Processor: AMD EPYC 7763 64-Core Processor 2.45 GHz
- · Installed RAM: 1.00 TB
- L1 VM: 16 CPU and 32 GiB RAM
- \cdot Single Queue Setup
- · L2 VM: 1 CPU and 4 GiB
- · Multi Queue Setup
- L2 VM: 8 CPU and 8 GiB

Re-mapping GHCB in VMM

· Problem without re-mapping

- Addition IOCTL and HyperCalls for each GHCB page access
- Performance degradation

· GHCB remapping

- Map GHCB Overlay page of the hypervisor into the VMM process
- Got rid of context switch to update GHCB page via hypercall
- Direct read/write GHCB page from the VMM
- Improved performance

Block I/O Throughput

Block Throughput in MiBps

250

Hardware Setup

Processor: AMD EPYC 7763 64-Core
Processor 2.45 GHz
Installed RAM: 1.00 TB
L1 VM: 16 CPU and 32 GiB RAM
L2 VM: 8 CPU and 8 GiB
Disk Size: 4GB

CPU Stress Test

\$ sysbench --test=cpu --cpu-max-prime=20000 run

KVM/QEMU Guest:		MSHV/CH Guest:		
Number of threads: 1		Number of threads: 1		
Prime numbers limit: 20000		Prime numbers limit: 20000		
CPU speed:		CPU speed:		
events per second: 621.41		events per second: 699.22		
General statistics:		General statistics:		
total time:	10.00215	total time:	10.00135	
total number of events: 6216		total number of events: 6994		
Latency (ms):		Latency (ms):		
min:	0.92	min:	0.92	
avg:	1.61	avg:	1.43	
max:	4.13	max:	6.03	
95th percentile:	1.70	95th percentile:	1.64	
sum:	9995.15	sum:	9994.40	
Threads fairness:		Threads fairness:		
events (avg/stddev):	6216.0000/0.00	events (avg/stddev):	6994.0000/0.00	
execution time (avg/stddev): 9.9951/0.00		execution time (avg/st	execution time (avg/stddev): 9.9944/0.00	

Discussion Points/Future Work

- Measurement of ACPI tables in guest attestation report
- Alternative CVM-native firmware like td-shim
- Boot time optimizations hashing rate is 2ms per page, large guest take a lot of time to boot
- Live migration support for AMD SEV-SNP CVM on CloudHypervisor

