|OThread Virtqueue Mapping

Improving virtio-blk SMP scalability in QEMU

Stefan Hajnoczi

stefanha@redhat.com

virtio-blk performance challenges in QEMU

High overhead when guests submit |/O

from many vCPUs

Important since guests often have many
vCPUs

Faster
A

Bare metal

vcpuO

J

vcpu1

/

\

virtio-blk

Virtio-blk multi-queue

Each vCPU has its own virtqueue

> No contention during I/0 submission

» Completion interrupts go to submitter vCPU

Enabled by default so why is SMP scalability still a

problem?

How IO Threads process virtio-blk I/O

A virtio-blk device is emulated in one QEMU thread @ b
4 vCPU Guest
Its virtqueues are all emulated in that single thread!
Things to do: § g § §
_)

» Parse virtqueue requests 5 é é[

» Image formats (qcow?2), block layer features, etc g
> Submit & complete |/O via Linux AlO or io_uring
o QEMU with
» Build virtqueue response 1 IO0Thread P
N\

> Inject completion interrupt into guest
‘RedHat

Simulating a multi-threaded virtio-blk implementation

4k randread

Guest with multiple virtio-blk devices ****]

with an |OThread each accessing the 00000

same disk —
s it faster than 1 device? 2 300000 -
2x improvement with 4 devices 200000 1
Looks promising, let’s implement it 100000 1
roperl _
PropEy 0 iodepth e
Benchmark details: & RedHat

https://gitlab.com/stefanha/virt-playbooks/-/commit/978a2c1/7elf7b744f9d207f7b083d51cdcaOb454

https://gitlab.com/stefanha/virt-playbooks/-/commit/978a2c17e1f7b744f9d207f7b083d51cdca0b454

|IOThread Virtqueue Mapping == multi-queue on host

4) &)
4 VvCPU Guest 4 vCPU Guest

33338 || 8333
\W/ 4&“
3 3383

QEMU with QEMU with
9 1 IO0Thread y k 4 IOThreads Y
Before APter

QEMU multi-queue block layer infrastructure

In QEMU 9.0 the block layer gained Kevin Wolf
multi-threaded request processing support
See Kevin & Emanuele’s Multigueue in the block Fmanuele
layer talk for details Esposito
Team effort between 4 of us :
b | Paolo
Bonzini

https://www.youtube.com/watch?v=Ubped0PgvZI&list=PLW3ep1uCIRfx5ApKGg41ARULGswMOCGBj&index=13&pp=iAQB
https://www.youtube.com/watch?v=Ubped0PgvZI&list=PLW3ep1uCIRfx5ApKGg41ARULGswMOCGBj&index=13&pp=iAQB

Libvirt syntax

Domain XML to enable I[OThread Virtqueue Mapping

<domain> Virtqueues are assigned
<vcpu>4</vcpu> round-robin to
<iothreads>2</iothreads>
|OThreads
<devices>
<disk ..>
<driver name='gemu' cache="none’ io='native’' .>
<iothreads> This feature is designed
<iothread id='1'></iothread>
<iothread id='2'></iothread> for cache="none’
</iothreads> ., .,
lO="native

Added in libvirt 10.0 by Peter Krempa & RedHat

QEMU syntax and per-virtqueue assignment

QEMU command-line

$ gemu-system-x86_64 .. Define virtio-blk-pci
—smp 4 . .
—object iothread, id=iothread® device with JSON syntax

—object iothread, id=iothread1

—device ‘{“driver”: “virtio-blk-pci”,
“iothread-vq-mapping”: |
{“iothread”: “iothread0”,

Optionally specify

“vgs”: [0, 3]}, individual virtqueue
{“iothread”: “iothreadi1”,
“vqs”: [1, 2]}1, numbers to control exact
) ,
assignment

Added in QEMU 9.0 & RedHat

10

|OThreads and io="threads" are different things

1. IOThreads perform device emulation
2. io="threads" performs I/O requests in a userspace
thread pool (instead of Linux AlO or io_uring)

|IOThread Virtqueue Mapping was not designed to
work with io="threads”

» Use <driver cache="none” io="native” ..>

n

Choosing the number of IOThreads

Too few - cannot saturate drive
Too many - cannot use CPUs for application g

Benchmarks on local NVMe drives suggest 4-8

threads -— @ _—

Measure it on your system to determine what's best

12

Sharing |OThreads between devices

It's okay to assign multiple virtio-blk devices to the

same |OThread
Often not all virtio-blk devices are utilized equally
No need to dedicate |IOThreads to low-usage devices

If you have knowledge of your workload, avoid

overloading any specific IOThread

500000 -

400000 A

300000 -

iops

200000 -

100000 A

Effects of pinning IOThreads

4k randread

1 § 8 16 32 64
iodepth

Benchmark details:

https://gitlab.com/stefanha/virt-playbooks/-/commit/1b3e42c24d31ablff69fd69887a5a701e2467136

nopin-1-1
nopin-2-1
nopin-4-1
nopin-6-1
pin-1-1
pin-2-1
pin-4-1
pin-6-1

Pinning IOThreads to
dedicated CPUs reduces
noise

|IOThread affinity is set by
libvirt's <iothreadpin>

Performance impact when
vCPU threads and IOThreads
compete for CPU

https://gitlab.com/stefanha/virt-playbooks/-/commit/1b3e42c24d31ab1ff69fd69887a5a701e2467136

How and when to pin

Dedicate a host CPU on same NUMA node as guest
RAM and storage controller PCl adapter for best
performance

Pinning requires support from

management/orchestration tool if VMs live migrate

15

Measuring |[OThread Virtqueue Mapping

fio --ioengine=1libaio
--rw=randread --bs=4k
--numjobs=8 --direct=1
--cpus_allowed=0-7

--cpus_allowed_policy=split

Intel Optane SSD DC P4800X
Raw host_device (no file system)

4 |10Threads doubles performance

iops

500000 A

400000 -

300000 A

200000 A

100000 ~

4k randread

B 1 10Thread
B 2 I0Threads
B 4 10Threads

iodepth

64

Large block sizes benefit less

Easier for 1IOThread to saturate disk at large block sizes

Fewer CPU cycles spent in QEMU

Workloads with 64+ KB block sizes may not need
multiple IOThreads

Measuring database workloads

Sanjay Rao ran HammerDB on Oracle and MSSQL

Table 1: Oracle Single large VM - 192 vcpu - 800G mem (4 10 threads - 96 queue - data volume)

User 10 20 40 80 100

1VM - Without Ic 502275 874371 1453838 2313728 2466708
1VM - 4 io threac 660906 1137540 1759600 2550453 2465182
Diff iothreads v¢ +22.86% +22.37% +17.53% +12.33% +13.82%

Starts strong but improvement drops as workload increases

17
Details:

https:/developers.redhat.com/articles/2024/09/10/virtualized-database-io-performance-improvements-rhel-94

https://developers.redhat.com/articles/2024/09/10/virtualized-database-io-performance-improvements-rhel-94

User

8 VMs - without IO Threads

8 VMs - with IO threads

Diff iothreads vs no iothreads (%)

Oracle with 8 guests

pus - 96G mem (4 |10 threads - 24 queues -

10

5296693

5236155

-116%

20

8140100

818425]

+0.54%

datav

olume)

40

10021034

10258458

+2.31%

80

11319230

11678899

+3.08%

100

12146374

12375553

+1.85%

To benefit you need CPU and disk bandwidth available!

Densely packed hosts won't benefit much

Future directions

Add support in virtio-scsi

Other VIRTIO device models can also use

iothread-vg-mapping infrastructure

Optimize QEMU |I/O code path to improve CPU
efficiency

20

Summary

|IOThread Virtqueue Mapping
improves virtio-blk SMP scalability

Try it on your I/O-intensive
workloads!

Integrate it into
management/orchestration tools

https:/developers.redhat.com/articles/2024/07/09/scaling-virtio-blk-disk-io-iothrea

More info here:

o

@':.."l.-.-i -:-I-. -r'zl o

d-virtqueue-mapping

https://developers.redhat.com/articles/2024/07/09/scaling-virtio-blk-disk-io-iothread-virtqueue-mapping
https://developers.redhat.com/articles/2024/07/09/scaling-virtio-blk-disk-io-iothread-virtqueue-mapping

