
Improving virtio-blk SMP scalability in QEMU

IOThread Virtqueue Mapping

Stefan Hajnoczi

stefanha@redhat.com

1

High overhead when guests submit I/O

from many vCPUs

Important since guests often have many

vCPUs

virtio-blk performance challenges in QEMU

2

3

Virtio-blk multi-queue

Each vCPU has its own virtqueue

▸ No contention during I/O submission

▸ Completion interrupts go to submitter vCPU

Enabled by default so why is SMP scalability still a

problem?

4

How IOThreads process virtio-blk I/O

A virtio-blk device is emulated in one QEMU thread

Its virtqueues are all emulated in that single thread!

Things to do:

▸ Parse virtqueue requests

▸ Image formats (qcow2), block layer features, etc

▸ Submit & complete I/O via Linux AIO or io_uring

▸ Build virtqueue response

▸ Inject completion interrupt into guest

5

Benchmark details:
https://gitlab.com/stefanha/virt-playbooks/-/commit/978a2c17e1f7b744f9d207f7b083d51cdca0b454

Simulating a multi-threaded virtio-blk implementation

Guest with multiple virtio-blk devices

with an IOThread each accessing the

same disk

Is it faster than 1 device?

2x improvement with 4 devices

Looks promising, let’s implement it

properly

https://gitlab.com/stefanha/virt-playbooks/-/commit/978a2c17e1f7b744f9d207f7b083d51cdca0b454

IOThread Virtqueue Mapping == multi-queue on host

6

7

QEMU multi-queue block layer infrastructure

In QEMU 9.0 the block layer gained

multi-threaded request processing support

See Kevin & Emanuele’s Multiqueue in the block

layer talk for details

Team effort between 4 of us

Emanuele
Esposito

Kevin Wolf

Paolo
Bonzini

https://www.youtube.com/watch?v=Ubped0PgvZI&list=PLW3ep1uCIRfx5ApKGg41ARULGswMOCGBj&index=13&pp=iAQB
https://www.youtube.com/watch?v=Ubped0PgvZI&list=PLW3ep1uCIRfx5ApKGg41ARULGswMOCGBj&index=13&pp=iAQB

8

Added in libvirt 10.0 by Peter Krempa

Libvirt syntax

Virtqueues are assigned

round-robin to

IOThreads

This feature is designed

for cache=’none’

io=’native’

<domain>
 …
 <vcpu>4</vcpu>
 <iothreads>2</iothreads>
 …
 <devices>
 <disk …>
 <driver name='qemu' cache=’none’ io=’native’ …>
 <iothreads>
 <iothread id='1'></iothread>
 <iothread id='2'></iothread>
 </iothreads>

Domain XML to enable IOThread Virtqueue Mapping

9

Added in QEMU 9.0

QEMU syntax and per-virtqueue assignment

Define virtio-blk-pci

device with JSON syntax

Optionally specify

individual virtqueue

numbers to control exact

assignment

$ qemu-system-x86_64 …
 –smp 4
 –object iothread,id=iothread0
 –object iothread,id=iothread1
 …
 –device ‘{“driver”: “virtio-blk-pci”,
 “iothread-vq-mapping”: [
 {“iothread”: “iothread0”,
 “vqs”: [0, 3]},
 {“iothread”: “iothread1”,
 “vqs”: [1, 2]}],
 …}’

QEMU command-line

10

IOThreads and io=”threads” are different things

1. IOThreads perform device emulation
2. io=”threads” performs I/O requests in a userspace

thread pool (instead of Linux AIO or io_uring)

IOThread Virtqueue Mapping was not designed to
work with io=”threads”

▸ Use <driver cache=”none” io=”native” …>

11

Choosing the number of IOThreads

Too few - cannot saturate drive

Too many - cannot use CPUs for application

Benchmarks on local NVMe drives suggest 4-8

threads

Measure it on your system to determine what’s best

12

Sharing IOThreads between devices

It’s okay to assign multiple virtio-blk devices to the

same IOThread

Often not all virtio-blk devices are utilized equally

No need to dedicate IOThreads to low-usage devices

If you have knowledge of your workload, avoid

overloading any specific IOThread

13

Benchmark details:
https://gitlab.com/stefanha/virt-playbooks/-/commit/1b3e42c24d31ab1ff69fd69887a5a701e2467136

Effects of pinning IOThreads

Pinning IOThreads to

dedicated CPUs reduces

noise

IOThread affinity is set by

libvirt’s <iothreadpin>

Performance impact when

vCPU threads and IOThreads

compete for CPU

https://gitlab.com/stefanha/virt-playbooks/-/commit/1b3e42c24d31ab1ff69fd69887a5a701e2467136

14

How and when to pin

Dedicate a host CPU on same NUMA node as guest

RAM and storage controller PCI adapter for best

performance

Pinning requires support from

management/orchestration tool if VMs live migrate

15

Measuring IOThread Virtqueue Mapping

fio --ioengine=libaio
 --rw=randread --bs=4k
 --numjobs=8 --direct=1
 --cpus_allowed=0-7
 --cpus_allowed_policy=split

Intel Optane SSD DC P4800X
Raw host_device (no file system)

4 IOThreads doubles performance

16

Large block sizes benefit less

Easier for 1 IOThread to saturate disk at large block sizes

Fewer CPU cycles spent in QEMU

Workloads with 64+ KB block sizes may not need

multiple IOThreads

17

Details:
https://developers.redhat.com/articles/2024/09/10/virtualized-database-io-performance-improvements-rhel-94

Measuring database workloads

Sanjay Rao ran HammerDB on Oracle and MSSQL

Starts strong but improvement drops as workload increases

https://developers.redhat.com/articles/2024/09/10/virtualized-database-io-performance-improvements-rhel-94

18

Oracle with 8 guests

To benefit you need CPU and disk bandwidth available!

Densely packed hosts won’t benefit much

19

Future directions

Add support in virtio-scsi

Other VIRTIO device models can also use

iothread-vq-mapping infrastructure

Optimize QEMU I/O code path to improve CPU

efficiency

20 https://developers.redhat.com/articles/2024/07/09/scaling-virtio-blk-disk-io-iothrea
d-virtqueue-mapping

Summary

IOThread Virtqueue Mapping
improves virtio-blk SMP scalability

Try it on your I/O-intensive
workloads!

Integrate it into
management/orchestration tools

More info here:

https://developers.redhat.com/articles/2024/07/09/scaling-virtio-blk-disk-io-iothread-virtqueue-mapping
https://developers.redhat.com/articles/2024/07/09/scaling-virtio-blk-disk-io-iothread-virtqueue-mapping

