
COCONUT-SVSM on KVM:
Progress, Plans and

Challenges

Jörg Rödel & Roy Hopkins
KVM Forum 2024

1

2

COCONUT-SVSM
Progress

3

● Many enhancements towards idiomatic Rust

○ Safety improvements

○ PerCPU Borrow Checking

● Test improvements

○ Test-in-SVSM - Run tests in SVSM kernel context

○ Fuzzers

● Moved to IGVM booting

○ Big step forward for generalizing HV-SVSM interface

○ Works on all platforms

○ Helpful for attestation

○ Supported on Hyper-V and Cloud Hypervisor

○ QEMU patches under review

General

Progress

4

● Support for AMD SEV-SNP built-in

○ Lots of assumptions about SEV-SNP in the code-base

○ Work ongoing to generalize these parts

● Intel TDX Partitioning Support is evolving

○ Works different than AMD SEV-SNP

○ In-guest level switches

○ All #VEs cause exit to SVSM

● Native Platform

○ Support for running in non-confidential mode

○ Easier debugging

○ Make SVSM usable for VSM

Platform Support

Progress

5

● Support for vTPM emulation merged

● With vTPM SVSM became useful 🙂
● Ephemeral TPM

○ No persistence yet - EK is regenerated every boot

○ Trust established via SNP attestation report

○ Useful for runtime attestation

● Still a big chunk of C code running in kernel

mode ☹

Services

Progress

6

● Many components implemented

○ Virtual memory management

○ RAM filesystem

○ Task concept and scheduler

○ Entry and exit code

○ ELF loader

○ Simple system call dispatcher

● Currently working on user-mode support

code

○ Heap allocator

○ Basic file-system access library

● Still some way to go before usable

○ COCONUT as a Rust target would simplify things

Road to User-Mode

Progress

7

COCONUT-SVSM
Plans

8

● Implement user-mode support library

○ Heap allocator and basic file system access

○ Get started with the COCONUT Rust target

● System Call interface

○ Built around an everything-is-an-object model

○ Several object types like files, events, VMs, VCPUs, …

● Create basic user-mode infrastructure

○ Simple init process

○ Move vTPM to user-mode

Finish User-Mode

Plans

9

● One of the most urgent problems

○ Required for non-AMD platform support

● Main use-case is sending IPIs

○ TLB flushes

○ Remote function calls will simplify some of the SVSM

logic

● Work has started, but there are features to

implement in KVM first

○ Discussed later in the Challenges part

● IRQ support will use a TPR-based model

x2APIC Support

Plans

10

● Finish virtual address space-split

○ Kernel: Global shared

○ Kernel: Per-CPU

○ Kernel: Per-Task

○ Uses: Per-Task

● Each kernel part gets its own heap

● This will nicely separate all execution contexts

● Use page-table self-map

● Get rid of the direct map

Improve Kernel
Isolation

Plans

11

● The paravisor model enables non-enlightened

OSes for Confidential Computing

● On TDX the paravisor model will likely be the

default

○ TDX platform support work will get COCONUT closer

to a paravisor model

● Paravisor model also planned for other

architectures

Towards Paravisor
Support

Plans

12

COCONUT-SVSM
Challenges

● Supporting AMD SEV-SNPs Virtual

Top-of-Memory (vTOM) feature

● Fixing launch measurements: User/KVM

VMSA synchronization

● Privilege level support in KVM (VMPLs/TDX

Partitions/…)
Overview

Challenges

Virtual
Top-of-Memory
(vTOM) for SEV-SNP

15

● Virtual Top-of-Memory is an AMD SEV-SNP

feature

○ Introduces boundary in physical address space

between always-encrypted/always-shared part

● Allows turning the page-table C(rypt)-bit into

a S(hared)-bit

○ Alignment with TDX

● Requirement for paravisor support

○ Is helpful for plain SVSM setups too

● Needs support in host hypervisor

○ Have a way to mirror PGD entries in the nested

page-table to both sides of the boundary

Support for Virtual
Top-of-Memory (vTOM)

Challenges

16

Userspace/KVM
SEV-ES VMSA
Synchronisation

● X86 SVM guest configuration is
defined using a Virtual Machine
Control Block (struct vmcb)

● Consists of control area and save-state
area

● Control area points to save state area
● KVM synchronises state between

vcpu→arch and save area

17

What is the VMSA?

CVMs must protect register state from host!
SEV-ES = Encrypted State

1. Guest owner provides
configuration

2. Guest pages including VMSA
are measured and encrypted

3. Launch measurement is
finalized

4. Guest requests attestation
report including launch
measurement

5. Attestation report provides
evidence

Changes to guest pages or VMSA
will affect launch measurement

18

Launch Measurement

● No current way to directly set
the VMSA
○ Registers must be set through

KVM_SET_REGS and
KVM_SET_SREGS

● KVM synchronises registers
with VMSA on SEV launch
finish
○ Problem: Not every field in VMSA

is represented by KVM state
○ Also, GPA of VMSA is fixed in KVM

● Prediction of launch
measurement is fragile

19

Setting the VMSA from Userspace

20

● Update existing
KVM_SEV_SNP_LAUNCH_UPDATE
IOCTL
○ Add support for VMSA page type
○ Set a flag to show VMSA has been provided

by userspace
○ Need to provide vCPU ID via ‘flags’
○ VMSA GPA is configured via ‘gfn_start’

● Update
KVM_SEV_SNP_LAUNCH_FINISH
handler
○ If VMSA not provided via LAUNCH_UPDATE

then sync and measure
○ Allows existing code to remain unchanged

VMSA: A proposed solution

● Currently only support SEV-SNP is included in the patch
○ Need SEV-ES support

● VMSA state should be synchronised to KVM register state
○ Can affect the initial behaviour of the guest
○ No need to synchronise after the guest launches: state is encrypted

21

What is left to complete?

22

VMPLs in KVM

● VMPL = SEV-SNP privilege levels
○ Abstraction layers implemented in hardware
○ Similar to Virtual Secure Mode VTLs and TDX

partitioning
○ SEV-SNP VMPL0 is the highest privilege level VTL0 is

lowest!
● vCPUs are assigned a VMPL

○ VMPL0 has full access by default
○ Private guest memory access rights per VMPL
○ Lower VMPLs cannot access pages from higher VMPLs

● Allows VMs to create security boundaries
○ Restricting access to memory at VMPL > 0

23

VMPL Overview

Why do we need VMPLs in COCONUT-SVSM?

24

● SVSM: “Secure VM Service Module”
○ Allows modules (services) to be securely

deployed in a VM
● Protection from host

○ Provided by memory and state encryption
○ SVSM integrity verifiable by launch

measurement/remote attestation
● Protection from guest OS

○ Provided by running the OS at a
lower-privilege VMPL (VMPL2)

○ SVSM runs at VMPL0
● Allows emulation of secure hardware, e.g.

Virtual TPM
○ State and integrity of vTPM is protected

Without VMPLs, guest could manipulate state,
compromising guest integrity.

Implementing VMPLs in KVM

● No upstream support for VMPLs
● Much effort has already been undertaken

○ Much work done by Amazon
○ Implementations in both KVM and in Userspace
○ KVM: SEV-SNP support for running an SVSM - AMD

● Requirements:
○ A solution that supports multiple architectures: SEV-SNP, TDX, VSM and possibly more
○ High performance - VMPL switches can occur at a high frequency
○ TDX: VMPL switches can occur without a guest exit
○ Independent APICs for each VMPL: Restricted and Alternate injection

25

Implementing VMPLs in KVM

● AMD SEV-SNP SVSM patches already support VMPL switches
○ Simplest starting point for experimentation
○ Only limited state saved on VMPL switch - no APIC
○ Discussions at Linux Plumbers 2024 have found a potentially better way forward

26

Backup/Restore VMPL state on each switch:
● Create a per-VMPL save state area within

‘struct kvm_vcpu’
● On VMPL switch, backup vcpu fields into

SSA for old VMPL, restore vpcu files from
SSA for new VMPL

● Hard to maintain - every new addition
requires code to backup/restore

● Hard to target non-current VMPL

Create a per-VMPL ‘struct kvm_vcpu’:
● Need to keep track of common state
● Associated via parent structure
● Share a single ‘struct kvm_run’
● On VMPL switch, simply select the

‘struct kvm_vcpu’ for the new VMPL from
‘struct kvm_vcpu_vmpl_state’.

● Easy to target non-current VMPL

● ‘Struct kvm_vcpu_vmpl_state’ tracks ‘struct
kvm_vcpu’ for each VMPL

● Each VMPL `struct kvm_vcpu` for a vCPU
points to the same `vcpu_parent`

● Fields that are common to all VMPLs are
moved to `struct kvm_vcpu_common`
○ Only populated in VMPL0
○ All other VMPLs point to

&vcpu_parent->vcpu_vmpl[0]->_common
● Unfortunately, all common field

references need to be modified
to be pointers
○ Many changes over many files

27

Per-VMPL ‘struct kvm_vcpu’
struct kvm_vcpu_vmpl_state {

 struct kvm_vcpu *vcpu_vmpl[4];

 int current_vmpl;

};

struct kvm_vcpu {

 struct kvm *kvm;

 struct kvm_vcpu_arch arch;

 struct kvm_vcpu_common {

 int cpu;

 int vcpu_id;

 int vcpu_idx;

 int mode;

 u64 requests;

 unsigned long guest_debug;

 struct mutex mutex;

 struct kvm_run *run;

 /* ... */

 } _common;

 struct kvm_vcpu_common *common;

 struct kvm_vcpu_vmpl_state *vcpu_parent;

 int vmpl;

};

KVM changes are fairly minimal when using the new structure layout:

● Creation/Destruction of a vCPU requires extra logic
○ Create/Destroy VMPL parent structure
○ Create and initialise or destroy struct kvm_vcpu for each VMPL
○ Setup links between structures

● LAPIC code requires target VMPL
○ Userspace does not specify a target VMPL for interrupts
○ Need to create a sensible default for now - VMPL2 for SEV-SNP

● SEV-SNP VMPL implementation based on Tom Lendacky’s patch series
○ ‘KVM: SEV-SNP support for running an SVSM’
○ Per VMPL fields replaced with individual fields in per-VMPL ‘struct kvm_vcpu’

● Handling of VMPL switches from guest
○ Requests to change VMPL by guest are handled on exit from guest, updating current VMPL pointer.
○ Detection of change of VMPL while running guest occurs on exit from guest

28

Implementing VMPL switches

● Look at Amazon’s PoC in detail
○ Add support for SEV-SNP
○ In-KVM optimisations - handling all switches in usermode will be far too slow

29

What next?

