cWESUSE

COCONUT-SVSM on KVM:

Progress, Plans and
Challenges

Jorg Rodel & Roy Hopkins
KVM Forum 2024

cWESUSE

COCONUT-SVSM —
Progress —

e Many enhancements towards idiomatic Rust

o Safety improvements

o PerCPU Borrow Checking
e Testimprovements

o Test-in-SVSM - Run tests in SVSM kernel context
General o Fuzzers
e Moved to IGVM booting

o Big step forward for generalizing HV-SVSM interface
o Works on all platforms

o Helpful for attestation

o Supported on Hyper-V and Cloud Hypervisor

o QEMU patches under review

e Support for AMD SEV-SNP built-in

o Lots of assumptions about SEV-SNP in the code-base
o Work ongoing to generalize these parts

e Intel TDX Partitioning Support is evolving

o Works different than AMD SEV-SNP

Platform Support o In-guest level switches
o Al #VEs cause exit to SVSM

e Native Platform

o Support for running in non-confidential mode
o Easier debugging
o Make SVSM usable for VSM

Services

Support for vTPM emulation merged
With vTPM SVSM became useful (&
Ephemeral TPM

o No persistence yet - EK is regenerated every boot
o Trust established via SNP attestation report

o Useful for runtime attestation

Still a big chunk of C code running in kernel

mode (X

e Many components implemented
o Virtual memory management
o RAM filesystem
o Task concept and scheduler
o Entry and exit code
o ELFloader

o Simple system call dispatcher

Road to User-Mode

e Currently working on user-mode support

code

o Heap allocator

o Basic file-system access library
e Still some way to go before usable
o COCONUT as a Rust target would simplify things

cWESUSE

COCONUT-SVSM —
Plans B

e Implement user-mode support library

o Heap allocator and basic file system access

o Get started with the COCONUT Rust target
e System Callinterface

o Built around an everything-is-an-object model

Finish User-Mode o Several object types like files, events, VMs, VCPUs; ...
e Create basic user-mode infrastructure

o Simple init process

o Move VIPM to user-mode

x2APIC Support

One of the most urgent problems
o Required for non-AMD platform support
Main use-case is sending IPIs
o TLBflushes
o Remote function calls will simplify some of the SVSM
logic
Work has started, but there are features to
implement in KVM first
o Discussed later in the Challenges part

IRQ support will use a TPR-based model

Improve Kernel
Isolation

Finish virtual address space-split

o Kernel: Global shared
o Kernel: Per-CPU
o Kernel: Per-Task

o Uses: Per-Task

Each kernel part gets its own heap
This will nicely separate all execution contexts
Use page-table self-map

Get rid of the direct map

Towards Paravisor
Support

The paravisor model enables non-enlightened
OSes for Confidential Computing

On TDX the paravisor model will likely be the
default

o TDX platform support work will get COCONUT closer

to a paravisor model

Paravisor model also planned for other

architectures

cWESUSE

COCONUT-SVSM —
Challenges B

Overview

Supporting AMD SEV-SNPs Virtual
Top-of-Memory (VTOM) feature

Fixing launch measurements: User/KVM
VMSA synchronization

Privilege level support in KVM (VMPLs/TDX
Partitions/...)

c®e SUSE

Virtual
Top-of-Memory
(VTOM) for SEV-SNP

Support for Virtual
Top-of-Memory (VTOM)

Virtual Top-of-Memory is an AMD SEV-SNP

feature

o Introduces boundary in physical address space

between always-encrypted/always-shared part
Allows turning the page-table C(rypt)-bit into
a S(hared)-bit
o Alignment with TDX
Requirement for paravisor support
o Is helpful for plain SVSM setups too
Needs support in host hypervisor

o Have a way to mirror PGD entries in the nested

page-table to both sides of the boundary

c®e SUSE

Userspace/KVM
SEV-ES VMSA

Synchronisation

What is the VMSA?

e X86 SVM guest configuration is
defined using a Virtual Machine
Control Block (struct vmcb)

struct kvm_vcpu

~——|struct vmcb_control_area

e Consists of control area and save-state .
a re a 108h VMSA Pointer
e Control area points to save state area pp—
P KVM synchron.i ses Stat e b etW een control: struct vmch_control_area — S— t;,save —
save: struct vmcb_save_area > (VMSA) —
vcpu—>arch and save area ES, CS, 55, DS, FS, 05

GDTR, LDTR

SEV_FEATURES

CVMs must protect register state from host!

SEV-ES = Encrypted State

c®We SUSE v BN

Launch Measurement

1. Guest owner provides
AMD EPYC CPU . .
configuration
Guest Configuration: —— . S—— 2. Guest pages 1nclud1ng VMSA
- SVSM _oEV_SNF_| .
[y Gl Hipeorin Sy S e Bactéhj Procassor are measured and encrypted
s 5t - 3. Launch measurement is
m (- 1 | Attestation Key finalized
A Pl » .
3 T 4. Guest requests attestation
) P * SP Firmware tincludi 1 h
SNP_GUEST_REQUEST(MSG_REPORT_REQ) Guest Contex o * Microcode report including launc
U Launch Digest measurement
Afesialion Report . 5. Attestation report provides
Launch Digest — evidence
S oww Changes to guest pages or VMSA
i will affect launch measurement
relying SVSM Kernel
party

@SUSE ® B e

Setting the VMSA from Userspace

e No current way to directly set
the VMSA

o Registers must be set through
KVM_SET REGS and
KVM_SET SREGS

e KVM synchronises registers
with VMSA on SEV launch
finish

o Problem: Not every field in VMSA

is represented by KVM state
o Also, GPA of VMSA is fixed in KVM

e Prediction of launch
measurement is fragile

c®We SUSE

Userspace

KVM_SET_REGS——>

segs

————KVM_SET_SREGS—»|

ds

cr0

efer

struct vimcb_save_area
(VMSA)

ES, CS, SS, DS, FS, GS
|E\,> GDTR, LDTR
A
SEV_FEATURES

KVM_SEV_SNP_LAUNCH_FINISH——/

VMSA: A proposed solution

KVM_SEV_SNP_PAGE_TYPE_NORMAL |

KVM_SEV_SNP_PAGE_TYPE_ZERO |

L U p d ate eX'i St1 n g | KVM_SEV_SNP_PAGE_TYPE_UNMEASURED |
KV M _S EV_S N P_ LAU N C H _U P DATE KVM_SEV_SNP_LAUNCH_UPDATE > | KVM_SEV_SNP_PAGE_TYPE_SECRETS |
IO CT L | KVM_SEV_SNP_PAGE_TYPE_CPUID |

o Add support for VMSA page type kum_sev_snp_launch_update
o Setaflag to show VMSA has been provided type J s S e TRE s |
by userspace flags : ‘ vmsa_updated = true ‘ :
o Need to provide vCPU ID via ‘flags’ s) 7
o VMSA GPA is configured via ‘¢fn_start’ kvm_get_vepu_by_id(lags) |
e Update | !

vepu->vmch->control.vmsa = ‘

KVM_SEV_SNP_LAUNCH_FINISH . st PAGE,SIZE

o If VMSA not provided via LAUNCH_UPDATE KVM_SEV_SNP_LAUNCH_FINISH

then sync and measure , v
o Allows existing code to remain unchanged [_smevmsaoamngs

v

[Measure & Encrypt VMSA]

__

c®We SUSE 2

What is left to complete?

e Currently only support SEV-SNP is included in the patch
o Need SEV-ES support
e VMSA state should be synchronised to KVM register state

o Can affect the initial behaviour of the guest
o No need to synchronise after the guest launches: state is encrypted

cWe SUSE 2 B

c®e SUSE

VMPLs in KVM

VMPL Overview

e VMPL = SEV-SNP privilege levels

o Abstraction layers implemented in hardware
o Similar to Virtual Secure Mode VTLs and TDX

partitioning

o SEV-SNPVMPLO is the highest privilege level VTLO is

lowest!

e VvCPUs are assigned a VMPL
o VMPLO has full access by default

o Private guest memory access rights per VMPL
o Lower VMPLs cannot access pages from higher VMPLs

e Allows VMs to create security boundaries
o Restricting access to memory at VMPL > 0

c®We SUSE

23

Guest Physical Memory

Linux Kernel

Userspace

0OS Memory

COCONUT-SVSM Kernel

COCONUT-SVSM Kernel

CPL3
COCONUT-SVSM Modules

COCONUT-SVSM Kernel Heap

COCONUT-SVSM Module Heap

OS Memory

Why do we need VMPLs in COCONUT-SVSM?

iHypervisor QEMU/KVM
e SVSM: “Secure VM Service Module”
Persistent Storage [€ I > COCONUT-SVSM Kernel o Allows modules (services) to be securely
Devics IR CPLO deployed ina VM
SYS@ALL] Protection from hOSt

I
COCONUT-SVSM Modules

o Provided by memory and state encryption
o SVSM integrity verifiable by launch

R RN measurement/remote attestation
! e Protection from guest OS

Other Modules o Provided by running the OS at a
o lower-privilege VMPL (VMPL2)
Switch VMPL 5 o SVSM runs at VMPLO
‘ VMPLO e Allows emulation of secure hardware, e.g.
... V-i rtual TPM
VMPL2 TPM Access

\\ {} o State and integrity of vVIPM is protected
Without VMPLs, guest could manipulate state,

g RSN compromising guest integrity.

cWe SUSE 24 BN

Implementing VMPLs in KVM

e No upstream support for VMPLs

e Much effort has already been undertaken
o Much work done by Amazon

o Implementationsin both KVM and in Userspace
o KVM: SEV-SNP support for running an SVSM - AMD
e Requirements:
o Asolution that supports multiple architectures: SEV-SNP, TDX, VSM and possibly more
o High performance - VMPL switches can occur at a high frequency
o TDX:VMPL switches can occur without a guest exit
o Independent APICs for each VMPL: Restricted and Alternate injection

cWe SUSE 25 B

Implementing VMPLs in KVM

e AMD SEV-SNP SVSM patches already support VMPL switches

O

O

O

Simplest starting point for experimentation

Only limited state saved on VMPL switch - no APIC

Discussions at Linux Plumbers 2024 have found a potentially better way forward

Backup/Restore VMPL state on each switch:

Create a per-VMPL save state area within
‘struct kvm_vcpu’

On VMPL switch, backup vcpu fields into
SSA for old VMPL, restore vpcu files from
SSA for new VMPL

Hard to maintain - every new addition
requires code to backup/restore

Hard to target non-current VMPL

Create a per-VMPL ‘struct kvm vcpu™

Need to keep track of common state
Associated via parent structure

Share a single ‘struct kvm_run’

On VMPL switch, simply select the
‘struct kvm_vcpu’ for the new VMPL from
‘struct kvm_vcpu vmpl state’

Easy to target non-current VMPL

c®We SUSE 2

Per-VMPL ‘struct kvm_vcpu’

‘Struct kvm_vcpu vmpl state’ tracks ‘struct
kvm_vcpu’ for each VMPL

Each VMPL " struct kvm _vcpu® for a vCPU
points to the same " vcpu_parent”

Fields that are common to all VMPLs are

moved to " struct kvm_vcpu_common’
o Only populated in VMPLO
o All other VMPLs point to
&vcpu parent->vcpu vmpl [0]-> common

Unfortunately, all common field
references need to be modified

to be pointers
0 Many changes over many files

SUSE =

stru

struct kvm vcpu vmpl state {

rcpu *vepu vmpl [4];

nt current vmpl;

't kvm_vcpu |

struct kvm *kvm;
struct kvm vcpu arch arch;
struct kvm vcpu common {
int cpu;
int vecpu id;
int vcpu_ idx;
int mode;
u64 requests;
unsigned long guest_debug;
struct mutex mutex;
struct kvm run *run;
,/ * ... */
} _common;

struct k'\/'Il"L'¢'cp147cc‘mmon *common;

struct kvm vcpu vmpl state *vcpu parent;
_vcpu_vmpl_ pu_p

nt vmpl;

Implementing VMPL switches

KVM changes are fairly minimal when using the new structure layout:

e Creation/Destruction of a vCPU requires extra logic
o Create/Destroy VMPL parent structure
o Create and initialise or destroy struct kvm_vcpu for each VMPL
o Setup links between structures
e LAPIC code requires target VMPL
o Userspace does not specify a target VMPL for interrupts
o Need to create a sensible default for now - VMPL2 for SEV-SNP
e SEV-SNPVMPLimplementation based on Tom Lendacky’s patch series
o ‘KVM: SEV-SNP support for running an SVSM’
o Per VMPL fields replaced with individual fields in per-VMPL ‘struct kvm vcpu’
e Handling of VMPL switches from guest

o Requests to change VMPL by guest are handled on exit from guest, updating current VMPL pointer.
o Detection of change of VMPL while running guest occurs on exit from guest

cWe SUSE 2 B

What next?

e Look at Amazon’s PoC in detail
o Add support for SEV-SNP
o In-KVM optimisations - handling all switches in usermode will be far too slow

c®We SUSE 20 BN

