
KVM/arm64 : Episode V
The Blob Strikes Back
KVM Forum 2023

Oliver Upton <oliver.upton@linux.dev>
Marc Zyngier <maz@kernel.org>
June 14, 2023
© 2023 Google



Confidential Computing, definition

Protecting the execution of a given piece of SW
Any data that hasn’t been explicitly shared must be confidential
It must not be possible to infer data from execution artefacts

SW must be able to verify that it runs on something that offers these guarantees
Usually achieved by providing ameasurement of the whole SW stack
... and the HW platform
Use of some attestation service

What is not (usually) provided
Availability

2 © 2023 Google



ARM CCA

The Confidential Computing Architecture (aka CCA) is made of various building blocks
RME: Real Management Extension

Adds a new security domain with the traditional 3 exception levels
Parallel to the existing two security domains (Secure and Non-Secure)

MEC: Memory Encryption
Adds per-Realm encryption

GPC: Granule Protection Check
Enforces cross security domain isolation on a 4kB basis
Excusively managed at the highest privilege level

RMM: Realm Management Monitor
SW construct acting as a proto-hypervisor for confidential VMs
Coordinates with GPC to ensure isolation

RME and RMM are the ones we’re interested in...
3 © 2023 Google



ARM RME

NS-Hyp

VMVM O
S

S-Hyp/SPM

TE
E

Se
cu

re
Pa

rt
iti
on

RMM

Re
al
m

Re
al
m

Monitor

EL0

EL1

EL2

EL3

Non-Secure SecureRealm

Root

4 © 2023 Google



ARM RME

NS-Hyp

VMVM O
S

S-Hyp/SPM

TE
E

Se
cu

re
Pa

rt
iti
on

RMM

Re
al
m

Re
al
m

Monitor

EL0

EL1

EL2

EL3

Non-Secure SecureRealm

Root

4 © 2023 Google



ARM RME

NS-Hyp

VMVM O
S

S-Hyp/SPM

TE
E

Se
cu

re
Pa

rt
iti
on

RMM

Re
al
m

Re
al
m

Monitor

EL0

EL1

EL2

EL3

Non-Secure SecureRealm

Root

4 © 2023 Google



What can RME do for you?

RME provides the basic infrastructure for memory isolation
Uses a split isolation model

Use the GPC to assign a given 4kB block to a given security domain
Use standard nested page tables to perform additional isolation in the Realm domain

Uses a split responsibility model
The GPC tables are controlled by Root (aka EL3)
The Realm Stage-2 page tables are controlled by R-EL2

5 © 2023 Google



The RME SW model

Split responsibilities again

Firmware running in Root is in charge of configuring the GPC
The RMM is in charge of

the guest state
the Stage-2 page table management
the handling of most traps
the handling of the guest requests (hypercalls)
... basically most of the CPU virtualisation functions

The Non-Secure hypervisor (KVM, for example) is in charge of
Providing the memory for the guest
vcpu scheduling
Userspace interactions
Interrupts (at least for now)

6 © 2023 Google



Interaction between RMM and the rest of the stack
Interactions with the NS hypervisor:

Provides a Realm Management Interface (RMI) which allows Realms to be
created
provided with memory and payload
executed
destroyed

Implemented as SMCs relayed by EL3 to the RMM

Interactions with the guests:
Provides a Realm Services Interface (RSI) which allows guests to

request an attestation report from the RMM
manage the sharing of memory with the NS side
implement PSCI for the purpose of booting vcpus

Implemented as SMCs handled by the RMM, and potentially forwarded to NS

7 © 2023 Google



The model is sensible enough.
It is actually close enough to what pKVM uses.

Except that...

8 © 2023 Google



What’s the catch?
Although there is an ARM-provided reference implementation...

... the RMM is deployed as a system-specific firmware

The NS-hypervisor cannot provide its own

No guarantee over correctness

No guarantee that it will be updated when bugs are found

Not even amethod to update it

The API has been developed as a “one-size-fits-all”

Or rather only for a hypothetical hypervisor

Defines policies rather than mechanisms

No access whatsoever to the underlying HW architecture

The whole thing has the flexibility of a concrete wall...
9 © 2023 Google



Hypervisor as firmware: what’s the problem?
Firmware on ARM has a pretty ugly history, starting with TrustZone

ARM provide good reference implementations (ATF, for example)...

... which are forked, hacked and tweaked by SoC vendors
This results in a very fragmented ecosystem

Incompatible behaviours, value add features
Power management at EL2 is still a common feature...

These implementations are hardly ever updated
Let alone audited/reviewed
ARM_SMCCC_QUIRK_QCOM_A6 is a personal favorite
Validation only occurs with ancient software
Remember Java’s “Write once, debug everywhere”?

Firmware on ARM tends to be a ship and forget business

Can we trust our VMs to this?
10 © 2023 Google



The Platitude of ’Zero Trust’

’Zero Trust’ is not fundamentally incompatible with KVM owning part of the TCB

Trust is a two-way street
From the guest perspective, the NS hypervisor is completely untrusted
From the NS hypervisor, we’re handing away our VMs to the blob

The CCA ecosystem has been built around the expectation that the reference
hypervisor is not independently verifiable
Of course, this is simply not true for KVM

All of KVM’s supposed sins are on full display
KVM being open source is the basis of another virtualization TCB (i.e. pKVM)

Since when did we lose trust in a hypervisor with a proven 10 year track record?

Surely firmware will do a better job than us...

11 © 2023 Google



The mythical “common API”

12 © 2023 Google



Why is a rigid API a problem?

While the RMM is supposed to be good enough for everyone

It prevents any sort of HYP/RMM optimisation

Only themost common interfaces are implemented

Everybody has to marshal to/from the standard interfaces

Effectively a race to the bottom

What will happen when a critical flaw in the API will require an incompatible change?

Do we immediately revoke support for non-upgraded implementations?

Will we even have a say in the fix?

The core issue here is that we’re not in charge of our own destiny.

13 © 2023 Google



Lessons learned from KVM/pKVM

The boundary between the host and the isolation primitive must be flexible

Critical for security
An inflexible API is a showstopper when a security hole is exposed
Being able to update the security primitive in lockstep is key

Critical for performance
Different hypervisors have different primitives and behaviours
Shoving the diversity of the ecosystem into the one true API looks wrong
Can only result in poor performance and difficult maintenance

Critical for innovation
We’re stuck with what the reference hypervisor has deemed useful
What if we want userspace-only realms? We can’t
What if we want Nested Virtualisation inside a realm? We can’t

All of this seems to have been ignored...

14 © 2023 Google



Case study: the journey of an EL1 timer interrupt

The RMM does near nothing in terms of GIC emulation

Manages the GICV CPU interface, but:
NS hypervisor still responsible for driving it (i.e. interrupt injection)
Global (distributor) and local (redistributor) state lives in NS hypervisor
RMM doesn’t have a view on the global GIC state

While the RMI interface is correct, it might not be the most performant design
Any physical interrupt requires a full exit out to the NS hypervisor
Same goes for physical interrupts destined for the guest (EL1 timer, for example)

15 © 2023 Google



Case study: the journey of an EL1 timer interrupt

Wouldn’t it be better if we had a shared-memory interface for GIC state?

RMM could theoretically handle some virtual interrupt injection
Guest timer interrupts are a very obvious point of optimization
Could reasonably be extended to other interrupt sources assigned to the guest

Requires a more complicated interface, harder to get it right
In the current model it requires an architected interface to work with a reference hypervisor
A flexible API with the RMM would let us improve when we get it wrong

16 © 2023 Google



Ecosystem perspective

17 © 2023 Google



Direction of travel

It is interesting to see how (and where) the embedded world is moving

pKVM is an opportunity to move “secure” services into VMs
Breaking the confidentiality/privilege dependency
A change Android sorely needs

It does so without binary blobs that cannot be replaced
The payloads are confidential
The hypervisor is for everyone to see, run and improve

It wouldn’t be hard to move the NS-EL2 side of pKVM to R-EL2
The HW architecture actually lends itself to it very well
pKVM would effectively have its own, tightly coupled RMM

And yet, the current CCA architecture actively prevents such a move.

18 © 2023 Google



At odds with the open source ecosystem

Onus is on KVM to align RMM API with the rest of the open source ecosystem

Make no mistake: CCA seeks reuse/abuse the pre-existing KVM ecosystem
KVM becomes nothing more than a userspace <-> firmware proxy
Requires KVM to make CCA compatible with present and future KVM features

Vendored firmware will invariably require vendor-specific workarounds
Introduces toil for developers largely unconcerned with CCA

Is it reasonable to expect developers to support features across KVM/pKVM/CCA?
Should upstream tolerate features incompatible with the RMM API?

Divides the already finite attention of virtualization-minded open source developers

Assumes that the hypervisor is, by definition, unable to deprivilege itself

19 © 2023 Google



OK, enough ranting

20 © 2023 Google



What do we need (and when do we want it)?

To move forward and make CCA a first-class KVM implementation, we need:

An architected, secure way to deploy a RMM at boot-time
Architected so that we don’t have to deal with 36 different methods
Secure, so that EL3/Root canmeasure and attest of the validity of the RMM to a guest

A measurement mechanism is independent of the RMM implementation
Should exist as an architected contract between RMM and guest

A process that leverage the existing Secure Boot infrastructures
Because different OSs have different requirements (UEFI-based boot vs Android, for example)

And we need this sooner rather than later.

21 © 2023 Google



Is the whole CCA saga wasted effort?

Do we need to throw away everything? Absolutely not!

The HW architecture is sensible
Provides the required isolation primitives
Even the EL3/Root control of the GPC is OK, as long as it is performant enough

Most of the RMM’s RSI is probably worth keeping
Nothing controversial there
It’d be even better if RSI and pKVM’s hypercall interface could converge

Even some of ARM’s RMM reference implementation could be reused
A common RMM library would be very useful
The API is what we object to

22 © 2023 Google



What do other architectures do?

We’ve been ranting about ARM. Are the other architectures any better?

x86 has it relatively easy
Only two vendors
Strong control over the “API” (ucode FTW!)
Suffers from being very inflexible (“we know better than you do”)
Well established upgrade path

RISC-V looks like ARM, at least with CoVE with the host in HS mode
TSM firmware (part of SBI) running in M-mode
Another variant with the firmware running in HS mode
Pre-baked API (COV{I,G}, COVH)
In any case, yet another fragmentation risk

S/390: please tell us about it!

23 © 2023 Google



Is it time for lunch yet?

24 © 2023 Google



Conclusion

Here’s a plea to ARM:

CCA is one of the major ARMv9 features

It has the potential to redefine how workloads are isolated on ARM systems

Ensuring that the use of the architecture isn’t limited is essential

KVM has been a key enabler for the success of ARM in the data-centre

We want to ensure that this success continues

We want to keep innovating in this field

Please give us the tools Open Source hypervisors need to meet this ambition.

25 © 2023 Google



Thank You!

26 © 2023 Google


	
	Confidential Computing, definition
	ARM CCA
	ARM RME
	What can RME do for you?
	The RME SW model
	Interaction between RMM and the rest of the stack
	
	What's the catch?
	Hypervisor as firmware: what's the problem?
	The Platitude of 'Zero Trust'
	
	Why is a rigid API a problem?
	Lessons learned from KVM/pKVM
	Case study: the journey of an EL1 timer interrupt
	Case study: the journey of an EL1 timer interrupt
	
	Direction of travel
	At odds with the open source ecosystem
	
	What do we need (and when do we want it)?
	Is the whole CCA saga wasted effort?
	What do other architectures do?
	
	Conclusion
	

