
© 2023, Amazon Web Services, Inc. or its affiliates. 

Enabling Windows Credential Guard in KVM
N I C O L A S  S A E N Z  J U L I E N N E ,  A N E L  O R A Z G A L I Y E V A

1



© 2023, Amazon Web Services, Inc. or its affiliates. 

We are Kernel/Hypervisor engineers at AWS.

Building the Nitro Hypervisor which powers most of EC2.

It comprises a mix of custom user-space components and Linux/KVM.

All the work presented here is the result of multiple people’s efforts. The project was 
bootstrapped and led by Evgeny Iakovlev. Later joined by Siddharth 
Chandrasekaran, Sebastian Ott, Alex Graf, Anel Orazgaliyeva and Nicolas Saenz 
Julienne.

Intro
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Microsoft’s Virtualization Based Security (VBS) technologies and their raison 
d’être.

VSM overview including some implementation notes.

Upstreaming plan and challenges.

Agenda
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Disambiguation: Virtualizing Windows

4



© 2023, Amazon Web Services, Inc. or its affiliates. 

Disambiguation: Virtualizing Windows
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Virtualization Based Security (VBS): Technologies that rely on the hypervisor to 
create isolated virtual environments.

Device Guard (DG): Set of components that prevent untrusted code from running 
on Windows.

Credential Guard (CG): VBS technology that prevents attackers from stealing 
credentials by virtue of storing them in memory inaccessible to the kernel.

Virtual Secure Mode (VSM): Set of virtualization extensions that serve as the 
building block for CG and DG. Defined in Microsoft’s TLFS (Hypervisor Top Level 
Functional Specification).

Disambiguation
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Enabling Hyper-V’s Virtual Secure Mode in KVM
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Mandatory:

• Secure boot

• Modern CPU with virtualization extensions: Intel 8th generation, AMD Zen 2, 
Qualcomm Snapdragon 8cx and later.

Recommended:

• UEFI lock

• TPM

Platform requirements
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VSM Overview
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Each vCPU now has a Virtual Trust 
Level (VTL) attribute: the higher the 
VTL, the more privileged.

Each VTL has its own CPU state, a 
private interrupt controller, and a set 
memory protections.

Microsoft implemented this on both 
x86_64 and arm64 (Documentation 
only public for x86).

Virtual Secure Mode
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ARM TrustZone
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The bootloader queries the 
VSM/CG/DG configuration from UEFI.

If enabled it loads the Secure Kernel 
(SK), which enables VSM, moves into 
VTL1,  bootstraps the rest of vCPUs 
and launches secure processes.

It then jumps back into the 
bootloader in VTL0, which continues 
the regular boot process.

Windows’ kernel communicates with 
SK through mailboxes and shared 
memory.`

Booting with VSM 
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VSM introduces two hypercalls for 
VTL switching: VTLCALL and 
VTLRETURN.

The hypervisor saves the calling CPU 
state, then loads the target VTL’s 
context (IP, SP, CRs, etc…) as well as 
the VTL’s APIC device model state. 
The hypervisor goes back to guest 
mode.

It’s only possible to move up/down 
one VTL per hypercall.

Synchronous VTL Switching  
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VTL switching can happen through 
interrupts and intercepts.

Interrupts are delivered to the same VTL 
that originated them.

VTL1 interrupts have precedence over 
VTL0 execution.

If VTL1 is running while a VTL0 interrupt 
is injected, the interrupt is saved and 
triggered on VTLRETURN.

External interrupts target VTL0.

Asynchronous VTL Switching 
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The vCPU state was extended to have 
per-VTL sets of private registers and 
MSRs.

vCPUs maintain an interrupt controller 
per each VTL.

This breaks the core assumption of 
vCPUs having one set of registers, MSRs 
and an interrupt subsystem, the result 
complicates core x86 KVM code and is 
hard to reason about.

It also doesn’t fit the current vCPU/APIC 
state serialization/deserialization APIs.

VTL Switching (implementation notes)
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Memory accesses are now 
contextualized by the VTL level of the 
CPU is running on.

GPA->HPA map is still common 
regardless of CPU and VTL (except 
overlay pages).

VTL1 can request the hypervisor to 
revoke R/W/X(+MBEC) access from 
VTL0.

If VTL0 accesses protected memory, 
the hypervisor injects an intercept into 
VTL1.

VTL Memory Protections 
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Each VTL operates in its own address space 
for KVM memory slots, similar to SMM.

Memory protection changes are channeled 
through memory slot modifications. 

These modifications require either 
serialization across vCPUs or atomic slot 
update support.

We observed 100,000+ protection changes 
during boot-time. 

We introduced atomic slot updates with 
targeted zapping.

VTL Memory Protections (implementation notes)
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All I/O memory accesses happen in VTL0.

Most HW is unable take I/O page faults.

Protection changes happen concurrent to I/O, all IOMMU page tables updates 
have to be atomic and the mappings remain valid at all times.

HW should support no-access mappings, if not the alternative is redirecting I/O 
into a scratch page.

VTL I/O Memory Protections
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We introduced a new IOMMU driver remap callback.

We implemented for both Intel and AMD. It’s the only place where vendor 
specific code was necessary.

remap also merges IOVA ranges into huge pages when possible to avoid 
fragmentation.

It’s exposed through a new VFIO ioctl.

VTL I/O Memory Protections (implementation notes)
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Upstreaming VSM
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Work-in-progress code available in the following repositories (see vsm branch):
https://github.com/vianpl/linux

https://github.com/vianpl/qemu

https://github.com/vianpl/kvm-unit-tests

The code is in a very rough state, is insecure, but it can can boot CG with a fully 
upstream virtualization stack.

Path to upstream
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Three challenges: handling VTL state in 
a sane way, memory protections, and 
I/O memory protections.

Having a vCPU per VTL should simplify 
VTL state handling.

Memory protections could piggyback on 
the proposed MEMORY_ATTRIBUTES 
ioctl. Although, it cannot target different 
VTLs.

For I/O memory protections, we will 
rebase our IOMMU driver work and 
propose an IOMMUFD Interface.

Path to upstream 
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Thanks!
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Hypervisor Top Level Functional Specification, v6.0b. Microsoft Feb, 2020 (GitHub)

Battle of the SKM and IUM: How Windows 10 Rewrites OS Architecture. Alex 
Ionescu, Chief Architect, CrowdStrike (Black Hat USA 2015)

AWS official Credential Guard documentation (docs.aws.amazon.com)

References
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Dead slides
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Per VTL State
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SYSENTER_CS, SYSENTER_ESP, SYSENTER_EIP, STAR, 
LSTAR, CSTAR, SFMASK, EFER, PAT,
KERNEL_GSBASE, FS.BASE, GS.BASE, TSC_AUX
HV_X64_MSR_HYPERCALL, HV_X64_MSR_GUEST_OS_ID
HV_X64_MSR_REFERENCE_TSC, HV_X64_MSR_APIC_FREQUENCY
HV_X64_MSR_EOI, HV_X64_MSR_ICR
HV_X64_MSR_TPR, HV_X64_MSR_APIC_ASSIST_PAGE
HV_X64_MSR_NPIEP_CONFIG
HV_X64_MSR_SIRBP, HV_X64_MSR_SCONTROL
HV_X64_MSR_SVERSION, HV_X64_MSR_SIEFP
HV_X64_MSR_SIMP, HV_X64_MSR_EOM
HV_X64_MSR_SINT0 – HV_X64_MSR_SINT15
HV_X64_MSR_STIMER0_CONFIG –
HV_X64_MSR_STIMER3_CONFIG
HV_X64_MSR_STIMER0_COUNT – HV_X64_MSR_STIMER3_COUNT

Local APIC registers (including CR8/TPR)
RIP, RSP
RFLAGS
CR0, CR3, CR4
DR7
IDTR, GDTR
CS, DS, ES, FS, GS, SS, TR, LDTR
TSC

HV_X64_MSR_TSC_FREQUENCY
HV_X64_MSR_VP_INDEX
HV_X64_MSR_VP_RUNTIME
HV_X64_MSR_RESET
HV_X64_MSR_TIME_REF_COUNT
HV_X64_MSR_GUEST_IDLE
HV_X64_MSR_DEBUG_DEVICE_OPTIONS
HV_X64_MSR_BELOW_1MB_PAGE
HV_X64_MSR_STATS_PARTITION_RETAIL_PAGE
HV_X64_MSR_STATS_VP_RETAIL_PAGE
MTRRs
MCG_CAP
MCG_STATUS

Rax, Rbx, Rcx, Rdx, Rsi, Rdi, Rbp
CR2
R8 – R15
DR0 – DR5
X87 floating point state
XMM state
AVX state
XCR0 (XFE)

Private Shared


