
© 2023, Amazon Web Services, Inc. or its affiliates.

Enabling Windows Credential Guard in KVM
N I C O L A S S A E N Z J U L I E N N E , A N E L O R A Z G A L I Y E V A

1

© 2023, Amazon Web Services, Inc. or its affiliates.

We are Kernel/Hypervisor engineers at AWS.

Building the Nitro Hypervisor which powers most of EC2.

It comprises a mix of custom user-space components and Linux/KVM.

All the work presented here is the result of multiple people’s efforts. The project was
bootstrapped and led by Evgeny Iakovlev. Later joined by Siddharth
Chandrasekaran, Sebastian Ott, Alex Graf, Anel Orazgaliyeva and Nicolas Saenz
Julienne.

Intro

2

© 2023, Amazon Web Services, Inc. or its affiliates.

Microsoft’s Virtualization Based Security (VBS) technologies and their raison
d’être.

VSM overview including some implementation notes.

Upstreaming plan and challenges.

Agenda

3

© 2023, Amazon Web Services, Inc. or its affiliates.

Disambiguation: Virtualizing Windows

4

© 2023, Amazon Web Services, Inc. or its affiliates.

Disambiguation: Virtualizing Windows

5

© 2023, Amazon Web Services, Inc. or its affiliates.

Virtualization Based Security (VBS): Technologies that rely on the hypervisor to
create isolated virtual environments.

Device Guard (DG): Set of components that prevent untrusted code from running
on Windows.

Credential Guard (CG): VBS technology that prevents attackers from stealing
credentials by virtue of storing them in memory inaccessible to the kernel.

Virtual Secure Mode (VSM): Set of virtualization extensions that serve as the
building block for CG and DG. Defined in Microsoft’s TLFS (Hypervisor Top Level
Functional Specification).

Disambiguation

6

© 2023, Amazon Web Services, Inc. or its affiliates.

Enabling Hyper-V’s Virtual Secure Mode in KVM
N I C O L A S S A E N Z J U L I E N N E , A N E L O R A Z G A L I Y E V A

7

© 2023, Amazon Web Services, Inc. or its affiliates.

Mandatory:

• Secure boot

• Modern CPU with virtualization extensions: Intel 8th generation, AMD Zen 2,
Qualcomm Snapdragon 8cx and later.

Recommended:

• UEFI lock

• TPM

Platform requirements

8

© 2023, Amazon Web Services, Inc. or its affiliates.

VSM Overview

© 2023, Amazon Web Services, Inc. or its affiliates.

Each vCPU now has a Virtual Trust
Level (VTL) attribute: the higher the
VTL, the more privileged.

Each VTL has its own CPU state, a
private interrupt controller, and a set
memory protections.

Microsoft implemented this on both
x86_64 and arm64 (Documentation
only public for x86).

Virtual Secure Mode

10

© 2023, Amazon Web Services, Inc. or its affiliates.

ARM TrustZone

11

© 2023, Amazon Web Services, Inc. or its affiliates.

The bootloader queries the
VSM/CG/DG configuration from UEFI.

If enabled it loads the Secure Kernel
(SK), which enables VSM, moves into
VTL1, bootstraps the rest of vCPUs
and launches secure processes.

It then jumps back into the
bootloader in VTL0, which continues
the regular boot process.

Windows’ kernel communicates with
SK through mailboxes and shared
memory.`

Booting with VSM

12

© 2023, Amazon Web Services, Inc. or its affiliates.

VSM introduces two hypercalls for
VTL switching: VTLCALL and
VTLRETURN.

The hypervisor saves the calling CPU
state, then loads the target VTL’s
context (IP, SP, CRs, etc…) as well as
the VTL’s APIC device model state.
The hypervisor goes back to guest
mode.

It’s only possible to move up/down
one VTL per hypercall.

Synchronous VTL Switching

13

© 2023, Amazon Web Services, Inc. or its affiliates.

VTL switching can happen through
interrupts and intercepts.

Interrupts are delivered to the same VTL
that originated them.

VTL1 interrupts have precedence over
VTL0 execution.

If VTL1 is running while a VTL0 interrupt
is injected, the interrupt is saved and
triggered on VTLRETURN.

External interrupts target VTL0.

Asynchronous VTL Switching

14

© 2023, Amazon Web Services, Inc. or its affiliates.

The vCPU state was extended to have
per-VTL sets of private registers and
MSRs.

vCPUs maintain an interrupt controller
per each VTL.

This breaks the core assumption of
vCPUs having one set of registers, MSRs
and an interrupt subsystem, the result
complicates core x86 KVM code and is
hard to reason about.

It also doesn’t fit the current vCPU/APIC
state serialization/deserialization APIs.

VTL Switching (implementation notes)

15

© 2023, Amazon Web Services, Inc. or its affiliates.

Memory accesses are now
contextualized by the VTL level of the
CPU is running on.

GPA->HPA map is still common
regardless of CPU and VTL (except
overlay pages).

VTL1 can request the hypervisor to
revoke R/W/X(+MBEC) access from
VTL0.

If VTL0 accesses protected memory,
the hypervisor injects an intercept into
VTL1.

VTL Memory Protections

16

© 2023, Amazon Web Services, Inc. or its affiliates.

Each VTL operates in its own address space
for KVM memory slots, similar to SMM.

Memory protection changes are channeled
through memory slot modifications.

These modifications require either
serialization across vCPUs or atomic slot
update support.

We observed 100,000+ protection changes
during boot-time.

We introduced atomic slot updates with
targeted zapping.

VTL Memory Protections (implementation notes)

17

© 2023, Amazon Web Services, Inc. or its affiliates.

All I/O memory accesses happen in VTL0.

Most HW is unable take I/O page faults.

Protection changes happen concurrent to I/O, all IOMMU page tables updates
have to be atomic and the mappings remain valid at all times.

HW should support no-access mappings, if not the alternative is redirecting I/O
into a scratch page.

VTL I/O Memory Protections

18

© 2023, Amazon Web Services, Inc. or its affiliates.

We introduced a new IOMMU driver remap callback.

We implemented for both Intel and AMD. It’s the only place where vendor
specific code was necessary.

remap also merges IOVA ranges into huge pages when possible to avoid
fragmentation.

It’s exposed through a new VFIO ioctl.

VTL I/O Memory Protections (implementation notes)

19

© 2023, Amazon Web Services, Inc. or its affiliates.

Upstreaming VSM

© 2023, Amazon Web Services, Inc. or its affiliates.

Work-in-progress code available in the following repositories (see vsm branch):
https://github.com/vianpl/linux

https://github.com/vianpl/qemu

https://github.com/vianpl/kvm-unit-tests

The code is in a very rough state, is insecure, but it can can boot CG with a fully
upstream virtualization stack.

Path to upstream

21

https://github.com/vianpl/linux
https://github.com/vianpl/qemu
https://github.com/vianpl/kvm-unit-tests

© 2023, Amazon Web Services, Inc. or its affiliates.

Three challenges: handling VTL state in
a sane way, memory protections, and
I/O memory protections.

Having a vCPU per VTL should simplify
VTL state handling.

Memory protections could piggyback on
the proposed MEMORY_ATTRIBUTES
ioctl. Although, it cannot target different
VTLs.

For I/O memory protections, we will
rebase our IOMMU driver work and
propose an IOMMUFD Interface.

Path to upstream

22

© 2023, Amazon Web Services, Inc. or its affiliates.

Thanks!

© 2023, Amazon Web Services, Inc. or its affiliates.

Hypervisor Top Level Functional Specification, v6.0b. Microsoft Feb, 2020 (GitHub)

Battle of the SKM and IUM: How Windows 10 Rewrites OS Architecture. Alex
Ionescu, Chief Architect, CrowdStrike (Black Hat USA 2015)

AWS official Credential Guard documentation (docs.aws.amazon.com)

References

24

https://github.com/MicrosoftDocs/Virtualization-Documentation/blob/main/tlfs/Hypervisor%20Top%20Level%20Functional%20Specification%20v6.0b.pdf
https://www.youtube.com/watch?v=LqaWIn4y26E
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/credential-guard.html

© 2023, Amazon Web Services, Inc. or its affiliates.

Dead slides

© 2023, Amazon Web Services, Inc. or its affiliates.

Per VTL State

26

SYSENTER_CS, SYSENTER_ESP, SYSENTER_EIP, STAR,
LSTAR, CSTAR, SFMASK, EFER, PAT,
KERNEL_GSBASE, FS.BASE, GS.BASE, TSC_AUX
HV_X64_MSR_HYPERCALL, HV_X64_MSR_GUEST_OS_ID
HV_X64_MSR_REFERENCE_TSC, HV_X64_MSR_APIC_FREQUENCY
HV_X64_MSR_EOI, HV_X64_MSR_ICR
HV_X64_MSR_TPR, HV_X64_MSR_APIC_ASSIST_PAGE
HV_X64_MSR_NPIEP_CONFIG
HV_X64_MSR_SIRBP, HV_X64_MSR_SCONTROL
HV_X64_MSR_SVERSION, HV_X64_MSR_SIEFP
HV_X64_MSR_SIMP, HV_X64_MSR_EOM
HV_X64_MSR_SINT0 – HV_X64_MSR_SINT15
HV_X64_MSR_STIMER0_CONFIG –
HV_X64_MSR_STIMER3_CONFIG
HV_X64_MSR_STIMER0_COUNT – HV_X64_MSR_STIMER3_COUNT

Local APIC registers (including CR8/TPR)
RIP, RSP
RFLAGS
CR0, CR3, CR4
DR7
IDTR, GDTR
CS, DS, ES, FS, GS, SS, TR, LDTR
TSC

HV_X64_MSR_TSC_FREQUENCY
HV_X64_MSR_VP_INDEX
HV_X64_MSR_VP_RUNTIME
HV_X64_MSR_RESET
HV_X64_MSR_TIME_REF_COUNT
HV_X64_MSR_GUEST_IDLE
HV_X64_MSR_DEBUG_DEVICE_OPTIONS
HV_X64_MSR_BELOW_1MB_PAGE
HV_X64_MSR_STATS_PARTITION_RETAIL_PAGE
HV_X64_MSR_STATS_VP_RETAIL_PAGE
MTRRs
MCG_CAP
MCG_STATUS

Rax, Rbx, Rcx, Rdx, Rsi, Rdi, Rbp
CR2
R8 – R15
DR0 – DR5
X87 floating point state
XMM state
AVX state
XCR0 (XFE)

Private Shared

