
ACCOUNTING AND PAGE
MIGRATION CHALLENGES IN
SECURE GUESTS USING FD-
BASED PRIVATE MEMORY

Nikunj Dadhania, Michael Roth

KVM FORUM 2023

Accounting and Page Migration Challenges in Secure Guests Using FD-based Private Memory | 20232

FD-BASED PRIVATE MEMORY OVERVIEW

• Currently userspace uses malloc()/mmap() to allocate memory, then uses virtual addresses to
tell KVM what memory to use to back guest memory

• Development of hypervisor support for various confidential computing technologies drove the
need for a different approach to managing confidential guest memory.

• Essentially involves using FD+offset to assign memory instead of userspace virtual addresses in
the case of private memory

• Challenges with FD-based private memory

• Page migration

• Memory Accounting

• NUMA

Accounting and Page Migration Challenges in Secure Guests Using FD-based Private Memory | 20233

FD-BASED GUEST MEMORY: GUEST_MEMFD

• guest_memfd (gmem)

• A.K.A. Unmapped Private Memory

• Previously known as “restrictedmem”, “guardedmem”, “private memfd”

• Provides a way to back private guest memory with pages that can’t be mapped or written to by
userspace

• Provides additional protections against tampering/corrupting guest memory from userspace

• Needed for some platforms where userspace tampering is fatal to the host

• Provides a way to partition shared/private guest memory into separate memory pools

• Needed for some platforms to avoid dealing with things like shared->private state transitions while host
is attempting to access a shared page (virtio/DMA buffers, GHCB pages for SEV-SNP)

• How does it work?

Accounting and Page Migration Challenges in Secure Guests Using FD-based Private Memory | 20234

NORMAL MEMSLOTS

• Currently both shared/private memory
are backed by normal memslots

• private memory can be mapped into
userspace just like normal memory

• malloc() / mmap()

• Adds new private memslot struct

• Provides both shared/private memory

• private memory allocated separately via
guest_memfd

• Not readable/writable

• Can’t be mmap()’d into userspace

• KVM MMU uses an xarray to determine
whether to map guest memory from
shared/private pool

Guest A

GVA GPA

0000h

1000h 2000h

2000h

3000h 3000h

...

Slot A (shared)

GPA HVA

0000h 1000h

1000h 2000h

2000h 3000h

3000h 4000h

…

VMM Page Table

HVA HPA

0000h

1000h

2000h

3000h 9000h

4000h 7000h

#NPF: GPA->HPA lookup
(normal memslot)

Accounting and Page Migration Challenges in Secure Guests Using FD-based Private Memory | 20235

PRIVATE MEMSLOTS

• Currently both shared/private memory
are backed by normal memslots

• private memory can be mapped into
userspace just like normal memory

• malloc() / mmap()

• Adds new private memslot struct

• Provides both shared/private memory

• private memory allocated separately via
guest_memfd

• Not readable/writable

• Can’t be mmap()’d into userspace

• KVM MMU uses an xarray to determine
whether to map guest memory from
shared/private pool

Guest A

GVA GPA

0000h

1000h 2000h

2000h

3000h 3000h

...

Slot A (shared)

GPA HVA

0000h 1000h

1000h 2000h

2000h 3000h

3000h 4000h

…

Slot A (private)

GPA offset

0000h 0000h

1000h 1000h

2000h 2000h

3000h 3000h

…

VMM Page Table

HVA HPA

0000h

1000h

2000h

3000h 9000h

4000h

gmem FD

offset HPA

0000h

1000h

2000h

3000h 8000h

…

Private?

GPA

0000h

1000h

2000h

3000h

…

#NPF: GPA->HPA lookup
(private memslot)

Accounting and Page Migration Challenges in Secure Guests Using FD-based Private Memory | 20236

USING FD-BASED MEMORY FOR GUESTS

• KVM MMU uses an xarray to determine
whether to map guest memory from
shared/private pool
• xarray controlled purely by userspace

• KVM_SNP_LAUNCH_UPDATE

• KVM_SET_MEMORY_ATTRIBUTES

• Explicit conversion
• GHCB page-state change request

forwarded to userspace
• KVM_EXIT_VMGEXIT

• alloc/dealloc private/shared memory

• VMM converts using KVM ioctl

• Implicit conversion
• if C-bit does not match xarray state:

• KVM_EXIT_MEMORY_FAULT

• alloc/dealloc private/shared memory

• VMM converts using KVM ioctl

Guest A

GVA GPA

0000h

1000h

2000h

3000h 3000h

...

VMM A (shared)

GPA HVA

0000h 1000h

1000h 2000h

2000h 3000h

3000h 4000h

4000h 5000h

…

VMM A (private)

GPA offset

0000h 0000h

1000h 1000h

2000h 2000h

3000h 3000h

…

VMM Page Table

HVA HPA

0000h

1000h

2000h

3000h 9000h

4000h

Mem FD

offset HPA

0000h

1000h

2000h

3000h 8000h

…

Private?

GPA

0000h

1000h

2000h

3000h

…

#NPF: GPA->HPA lookup/conversion
(restricted memslot)

allocate/deallocate

KVM_EXIT_VMGEXIT

KVM_SET_MEMORY_ATTRIBUTES

Accounting and Page Migration Challenges in Secure Guests Using FD-based Private Memory | 20237

USING FD-BASED MEMORY FOR GUESTS

• KVM MMU uses an xarray to determine
whether to map guest memory from
shared/private pool
• xarray controlled purely by userspace

• KVM_SNP_LAUNCH_UPDATE

• KVM_SET_MEMORY_ATTRIBUTES

• Explicit conversion
• GHCB page-state change request

forwarded to userspace
• KVM_EXIT_VMGEXIT

• alloc/dealloc private/shared memory

• VMM converts using KVM ioctl

• Implicit conversion
• if C-bit does not match xarray state

• KVM_EXIT_MEMORY_FAULT

• alloc/dealloc private/shared memory

• VMM converts using KVM ioctl

Guest A

GVA GPA

0000h

1000h

2000h

3000h 3000h

...

VMM A (shared)

GPA HVA

0000h 1000h

1000h 2000h

2000h 3000h

3000h 4000h

4000h 5000h

…

VMM A (private)

GPA offset

0000h 0000h

1000h 1000h

2000h 2000h

3000h 3000h

…

VMM Page Table

HVA HPA

0000h

1000h

2000h

3000h 9000h

4000h

Mem FD

offset HPA

0000h

1000h

2000h

3000h 8000h

…

Private?

GPA

0000h

1000h

2000h

3000h

…

#NPF: GPA->HPA lookup/conversion
(restricted memslot)

allocate/deallocate

KVM_EXIT_MEMORY_FAULT

KVM_SET_MEMORY_ATTRIBUTES

Accounting and Page Migration Challenges in Secure Guests Using FD-based Private Memory | 20238

PAGE MIGRATION

• gmem does not currently support page migration, likely a follow-up feature

• Will be wanted eventually

• Memory compaction/defragmentation

• NUMA rebalancing

• Cgroup movements

• memory offlining/unplug

• migratepages command or syscalls like move_pages and migrate_pages

• Number of issues need to be addressed to get these working for gmem / confidential guests

• Let’s look at some of these issues in the context of memory compaction

Accounting and Page Migration Challenges in Secure Guests Using FD-based Private Memory | 20239

PAGE MIGRATION FOR MEMORY COMPACTION

• kcompactd thread runs periodically to migrate pages from sparse areas to denser ones

• Helps reduce memory fragmentation to avoid failures for contiguous allocations

• Improves availability of THPs

• As with other subsystems, relies on migrate_pages() interface to handle the migrations

Accounting and Page Migration Challenges in Secure Guests Using FD-based Private Memory | 202310

PAGE MIGRATION FOR MEMORY COMPACTION

• migrate_pages(from_list, new_page_fn, put_page_fn, mode, reason, …)

• from_list: list of folios/pages to migrate

• new_page_fn: compaction_alloc(), scans for suitable destinations pages starting at end of zone

• Favors low-order pages, and pages from movable zones to avoid fragmenting non-movable zones where
migrations are disallowed/discouraged (e.g., DMA memory)

• put_page_fn: compaction_free(), on failure, puts destination pages back on freelist

• mode: MIGRATE_ASYNC, MIGRATE_SYNC, …

• reason: MR_COMPACTION

• Other subsystems might use MR_MEMORY_HOTPLUG, MR_MEMPOLICY_MBIND, etc.

Accounting and Page Migration Challenges in Secure Guests Using FD-based Private Memory | 202311

PAGE MIGRATION FOR MEMORY COMPACTION

• migrate_pages(…)

• migrate_folio_unmap(src, &dst, …)

• Use src folio’s rmap to find VMAs that map the page into userspace

• Unmap and issue MMU notifier events so subscribers like KVM can unmap from guest TDP/NPT/EPT

• But gmem is never mapped… so no KVM MMU invalidations are issued. Use-after-free!

• migrate_folio_move(src, &dst, …)

• Use gmem’s migrate_folio callback to handle copying src to dst

• But private memory generally cannot be migrated without hardware/firmware support.

• Possible solution

• gmem’s migrate_folio callback can provide hooks to handle platform-specific requirements (e.g.,
SNP_PAGE_MOVE firmware commands for SEV-SNP)

• gmem is owned by KVM, so gmem migrate_folio callback can handle KVM MMU invalidations directly

• Acceptable for compaction maybe, but other page migration users like cgroups/NUMA rely on
VMA-based memory accounting to make migration decisions…

Accounting and Page Migration Challenges in Secure Guests Using FD-based Private Memory | 202312

MEMORY ACCOUNTING

• gmem FD allocations are currently counted as usage page cache allocations

• Not accounted to current process

• Adversely impacts accounting for a number of areas

• Cgroups

• General process limits

• NUMA

• For example…

Accounting and Page Migration Challenges in Secure Guests Using FD-based Private Memory | 202313

MEMORY ACCOUNTING ISSUES

• Start SNP guest 40G memory
with memory interleave
between Node2 and Node3

numactl -i 2,3 ./bootg_snp.sh

• Incorrect process resident
memory is reported

• Although NUMA allocation
came from Node2 and Node3,
does not get attributed to
QEMU process

• Uses process mempolicy for
proper node allocation

Accounting and Page Migration Challenges in Secure Guests Using FD-based Private Memory | 202314

MEMORY ACCOUNTING ISSUES

• /proc/<pid>/numa_maps

• /proc/<pid>/smaps

• Uses VMAs to populate memory usage per NUMA node

• /memfd:memory-backend-memfd-private missing

Accounting and Page Migration Challenges in Secure Guests Using FD-based Private Memory | 202315

MEMORY ACCOUNTING – POTENTIAL SOLUTIONS

• Memory accounting relies heavily on VMAs, as does migration

• Give it what it wants?

• Use shadow/invisible VMAs for guest-mapped gmem ranges

• Need to ensure mappings don’t get put in process page tables, or aren’t actually visible by hardware

• Maybe some architectures don’t provide such a thing

• Could provide alternative hooks for “shadow” VMAs for handling translations throughout kernel

• Wire those lookups directly up to the TDP?

• Just having a VMA isn’t enough, some accounting happens via page fault handler

• Duplicate that accounting when mapping gmem pages into TDP? During initial allocation?

• Alternative: implement a completely separate alternative to using VMAs for accounting?

• Not necessarily better

• Needs a lot more discussion/investigation

Accounting and Page Migration Challenges in Secure Guests Using FD-based Private Memory | 202316

SUMMARY

• gmem/UPM provides the critical framework needed to finally enable confidential computing for
KVM, but many gaps remain WRT page migration and memory accounting

• Current implementation will likely be acceptable for many users who value security above all,
but eventually we will need to close some of these gaps

• Potential solutions exist, but no clear/simple path yet

• Will need input from the community and the memory experts to get there

• Thanks!

17 |

Copyright and disclaimer
 ©2023 Advanced Micro Devices, Inc. All rights reserved.

 AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for

identification purposes only and may be trademarks of their respective companies.

 The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The

information contained herein is subject to change and may be rendered inaccurate releases, for many reasons, including but not limited to product and roadmap

changes, component and motherboard version changes, new model and/or product differences between differing manufacturers, software changes, BIOS

flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD

assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes

from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

 THIS INFORMATION IS PROVIDED 'AS IS." AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND

ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY

DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT

WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM

THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Accounting and Page Migration Challenges in Secure Guests Using FD-based Private Memory | 202319

OTHER ISSUES – NUMA VIA MBIND()

• Basic NUMA is possible via numactl / set_mempolicy()

• but process-wide policies aren't enough, and QEMU generally doesn’t rely on them for NUMA

• Each memory backend instance will use mbind() to set policy for that particular memory range

• but mbind() needs a virtual address, and the gmem FD can’t be mmap()’d, only the FD
representing shared pool gets the mmap()/mbind()

• Potential solutions

• Implement a new fbind() ioctl?

• Have KVM duplicate the mempolicy for shared pool onto the private/gmem pool underneath the
covers?

qemu \
–numa node,nodeid=0,cpus=0-1,memdev=mem0 \
-object memory-backend-memfd-private,id=mem0,policy=bind,host-nodes=0 \
–numa node,nodeid=1,cpus=2-3,memdev=mem1 \
-object memory-backend-memfd-private,id=mem1,policy=bind,host-nodes=1

	Slide 1: Accounting and page migration challenges in Secure guests using FD-based private memory
	Slide 2: FD-BASED PRIVATE MEMORY OVERVIEW
	Slide 3: FD-based guest memory: GUEST_MEMFD
	Slide 4: NORMAL MEMSLOTS
	Slide 5: PRIVATE MEMSLOTS
	Slide 6: USING FD-BASED MEMORY FOR GUESTS
	Slide 7: USING FD-BASED MEMORY FOR GUESTS
	Slide 8: PAGE MIGRATION
	Slide 9: PAGE MIGRATION FOR Memory Compaction
	Slide 10: PAGE MIGRATION FOR Memory Compaction
	Slide 11: PAGE MIGRATION FOR Memory Compaction
	Slide 12: Memory Accounting
	Slide 13: MEMORY ACCOUNTING ISSUES
	Slide 14: MEMORY ACCOUNTING ISSUES
	Slide 15: Memory Accounting – Potential SOLUTIONS
	Slide 16: SUMMARY
	Slide 17: Copyright and disclaimer
	Slide 18
	Slide 19: OTHER ISSUES – NUMA via mbind()

