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FD-BASED PRIVATE MEMORY OVERVIEW

• Currently userspace uses malloc()/mmap() to allocate memory, then uses virtual addresses to 
tell KVM what memory to use to back guest memory

• Development of hypervisor support for various confidential computing technologies drove the 
need for a different approach to managing confidential guest memory.

• Essentially involves using FD+offset to assign memory instead of userspace virtual addresses in 
the case of private memory

• Challenges with FD-based private memory

• Page migration

• Memory Accounting

• NUMA
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FD-BASED GUEST MEMORY: GUEST_MEMFD

• guest_memfd (gmem)

• A.K.A. Unmapped Private Memory

• Previously known as “restrictedmem”, “guardedmem”, “private memfd”

• Provides a way to back private guest memory with pages that can’t be mapped or written to by 
userspace

• Provides additional protections against tampering/corrupting guest memory from userspace

• Needed for some platforms where userspace tampering is fatal to the host

• Provides a way to partition shared/private guest memory into separate memory pools

• Needed for some platforms to avoid dealing with things like shared->private state transitions while host 
is attempting to access a shared page (virtio/DMA buffers, GHCB pages for SEV-SNP)

• How does it work?
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NORMAL MEMSLOTS

• Currently both shared/private memory 
are backed by normal memslots

• private memory can be mapped into 
userspace just like normal memory

• malloc() / mmap() 

• Adds new private memslot struct

• Provides both shared/private memory

• private memory allocated separately via 
guest_memfd

• Not readable/writable

• Can’t be mmap()’d into userspace

• KVM MMU uses an xarray to determine 
whether to map guest memory from 
shared/private pool

Guest A

GVA GPA

0000h

1000h 2000h

2000h

3000h 3000h

...

Slot A (shared)

GPA HVA

0000h 1000h

1000h 2000h

2000h 3000h

3000h 4000h

…

VMM Page Table

HVA HPA

0000h

1000h

2000h

3000h 9000h

4000h 7000h

#NPF: GPA->HPA lookup
(normal memslot)
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PRIVATE MEMSLOTS

• Currently both shared/private memory 
are backed by normal memslots

• private memory can be mapped into 
userspace just like normal memory

• malloc() / mmap()

• Adds new private memslot struct

• Provides both shared/private memory

• private memory allocated separately via 
guest_memfd

• Not readable/writable

• Can’t be mmap()’d into userspace

• KVM MMU uses an xarray to determine 
whether to map guest memory from 
shared/private pool

Guest A

GVA GPA

0000h

1000h 2000h

2000h

3000h 3000h

...

Slot A (shared)

GPA HVA

0000h 1000h

1000h 2000h

2000h 3000h

3000h 4000h

…

Slot A (private)

GPA offset

0000h 0000h

1000h 1000h

2000h 2000h

3000h 3000h

…

VMM Page Table

HVA HPA

0000h

1000h

2000h

3000h 9000h

4000h

gmem FD

offset HPA

0000h

1000h

2000h

3000h 8000h

…

Private?

GPA

0000h

1000h

2000h

3000h

…

#NPF: GPA->HPA lookup
(private memslot)
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USING FD-BASED MEMORY FOR GUESTS

• KVM MMU uses an xarray to determine 
whether to map guest memory from 
shared/private pool
• xarray controlled purely by userspace

• KVM_SNP_LAUNCH_UPDATE

• KVM_SET_MEMORY_ATTRIBUTES

• Explicit conversion
• GHCB page-state change request 

forwarded to userspace
• KVM_EXIT_VMGEXIT

• alloc/dealloc private/shared memory

• VMM converts using KVM ioctl

• Implicit conversion
• if C-bit does not match xarray state:

• KVM_EXIT_MEMORY_FAULT

• alloc/dealloc private/shared memory

• VMM converts using KVM ioctl

Guest A

GVA GPA

0000h

1000h

2000h

3000h 3000h

...

VMM A (shared)

GPA HVA

0000h 1000h

1000h 2000h

2000h 3000h

3000h 4000h

4000h 5000h

…

VMM A (private)

GPA offset

0000h 0000h

1000h 1000h

2000h 2000h

3000h 3000h

…

VMM Page Table

HVA HPA

0000h

1000h

2000h

3000h 9000h

4000h

Mem FD

offset HPA

0000h

1000h

2000h

3000h 8000h

…

Private?

GPA

0000h

1000h

2000h

3000h

…

#NPF: GPA->HPA lookup/conversion
(restricted memslot)

allocate/deallocate

KVM_EXIT_VMGEXIT

KVM_SET_MEMORY_ATTRIBUTES
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USING FD-BASED MEMORY FOR GUESTS

• KVM MMU uses an xarray to determine 
whether to map guest memory from 
shared/private pool
• xarray controlled purely by userspace

• KVM_SNP_LAUNCH_UPDATE

• KVM_SET_MEMORY_ATTRIBUTES

• Explicit conversion
• GHCB page-state change request 

forwarded to userspace
• KVM_EXIT_VMGEXIT

• alloc/dealloc private/shared memory

• VMM converts using KVM ioctl

• Implicit conversion
• if C-bit does not match xarray state

• KVM_EXIT_MEMORY_FAULT

• alloc/dealloc private/shared memory

• VMM converts using KVM ioctl

Guest A

GVA GPA

0000h

1000h

2000h

3000h 3000h

...

VMM A (shared)

GPA HVA

0000h 1000h

1000h 2000h

2000h 3000h

3000h 4000h

4000h 5000h

…

VMM A (private)

GPA offset

0000h 0000h

1000h 1000h

2000h 2000h

3000h 3000h

…

VMM Page Table

HVA HPA

0000h

1000h

2000h

3000h 9000h

4000h

Mem FD

offset HPA

0000h

1000h

2000h

3000h 8000h

…

Private?

GPA

0000h

1000h

2000h

3000h

…

#NPF: GPA->HPA lookup/conversion
(restricted memslot)

allocate/deallocate

KVM_EXIT_MEMORY_FAULT

KVM_SET_MEMORY_ATTRIBUTES
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PAGE MIGRATION

• gmem does not currently support page migration, likely a follow-up feature

• Will be wanted eventually

• Memory compaction/defragmentation

• NUMA rebalancing

• Cgroup movements

• memory offlining/unplug

• migratepages command or syscalls like move_pages and migrate_pages

• Number of issues need to be addressed to get these working for gmem / confidential guests

• Let’s look at some of these issues in the context of memory compaction
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PAGE MIGRATION FOR MEMORY COMPACTION

• kcompactd thread runs periodically to migrate pages from sparse areas to denser ones

• Helps reduce memory fragmentation to avoid failures for contiguous allocations

• Improves availability of THPs

• As with other subsystems, relies on migrate_pages() interface to handle the migrations
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PAGE MIGRATION FOR MEMORY COMPACTION

• migrate_pages(from_list, new_page_fn, put_page_fn, mode, reason, …)

• from_list: list of folios/pages to migrate

• new_page_fn: compaction_alloc(), scans for suitable destinations pages starting at end of zone

• Favors low-order pages, and pages from movable zones to avoid fragmenting non-movable zones where 
migrations are disallowed/discouraged (e.g., DMA memory)

• put_page_fn: compaction_free(), on failure, puts destination pages back on freelist

• mode: MIGRATE_ASYNC, MIGRATE_SYNC, …

• reason: MR_COMPACTION

• Other subsystems might use MR_MEMORY_HOTPLUG, MR_MEMPOLICY_MBIND, etc.
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PAGE MIGRATION FOR MEMORY COMPACTION

• migrate_pages(…)

• migrate_folio_unmap(src, &dst, …)

• Use src folio’s rmap to find VMAs that map the page into userspace

• Unmap and issue MMU notifier events so subscribers like KVM can unmap from guest TDP/NPT/EPT

• But gmem is never mapped… so no KVM MMU invalidations are issued. Use-after-free!

• migrate_folio_move(src, &dst, …)

• Use gmem’s migrate_folio callback to handle copying src to dst

• But private memory generally cannot be migrated without hardware/firmware support.

• Possible solution

• gmem’s migrate_folio callback can provide hooks to handle platform-specific requirements (e.g., 
SNP_PAGE_MOVE firmware commands for SEV-SNP)

• gmem is owned by KVM, so gmem migrate_folio callback can handle KVM MMU invalidations directly

• Acceptable for compaction maybe, but other page migration users like cgroups/NUMA rely on 
VMA-based memory accounting to make migration decisions…
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MEMORY ACCOUNTING

• gmem FD allocations are currently counted as usage page cache allocations

• Not accounted to current process

• Adversely impacts accounting for a number of areas

• Cgroups

• General process limits

• NUMA

• For example…
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MEMORY ACCOUNTING ISSUES

• Start SNP guest 40G memory 
with memory interleave 
between Node2 and Node3

numactl -i 2,3 ./bootg_snp.sh

• Incorrect process resident 
memory is reported

• Although NUMA allocation 
came from Node2 and Node3, 
does not get attributed to 
QEMU process

• Uses process mempolicy for 
proper node allocation
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MEMORY ACCOUNTING ISSUES

• /proc/<pid>/numa_maps

• /proc/<pid>/smaps

• Uses VMAs to populate memory usage per NUMA node

• /memfd:memory-backend-memfd-private missing
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MEMORY ACCOUNTING – POTENTIAL SOLUTIONS

• Memory accounting relies heavily on VMAs, as does migration

• Give it what it wants?

• Use shadow/invisible VMAs for guest-mapped gmem ranges

• Need to ensure mappings don’t get put in process page tables, or aren’t actually visible by hardware

• Maybe some architectures don’t provide such a thing

• Could provide alternative hooks for “shadow” VMAs for handling translations throughout kernel

• Wire those lookups directly up to the TDP?

• Just having a VMA isn’t enough, some accounting happens via page fault handler

• Duplicate that accounting when mapping gmem pages into TDP? During initial allocation?

• Alternative: implement a completely separate alternative to using VMAs for accounting?

• Not necessarily better

• Needs a lot more discussion/investigation
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SUMMARY

• gmem/UPM provides the critical framework needed to finally enable confidential computing for 
KVM, but many gaps remain WRT page migration and memory accounting

• Current implementation will likely be acceptable for many users who value security above all, 
but eventually we will need to close some of these gaps

• Potential solutions exist, but no clear/simple path yet

• Will need input from the community and the memory experts to get there

• Thanks!
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OTHER ISSUES – NUMA VIA MBIND()

• Basic NUMA is possible via numactl / set_mempolicy()

• but process-wide policies aren't enough, and QEMU generally doesn’t rely on them for NUMA

• Each memory backend instance will use mbind() to set policy for that particular memory range

• but mbind() needs a virtual address, and the gmem FD can’t be mmap()’d, only the FD 
representing shared pool gets the mmap()/mbind()

• Potential solutions

• Implement a new fbind() ioctl?

• Have KVM duplicate the mempolicy for shared pool onto the private/gmem pool underneath the 
covers?

qemu \
–numa node,nodeid=0,cpus=0-1,memdev=mem0 \
-object memory-backend-memfd-private,id=mem0,policy=bind,host-nodes=0 \
–numa node,nodeid=1,cpus=2-3,memdev=mem1 \
-object memory-backend-memfd-private,id=mem1,policy=bind,host-nodes=1
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