
1

Arm CPU models in QEMU
Where we are, and where we might be going

Cornelia Huck <cohuck@redhat.com>
IRC: cohuck

mailto:cohuck@redhat.com


2

AGENDA

Today’s talk

Where are we 

right now?

(The Present)

What do we 

need?

(The Future)

How can we 

achieve it?

Discuss :)



3

Where are we now?

Arm
 CPU m

odels in QEM
U



4

Arm CPU models on QEMU: Where are we now?

TCG
● Named CPU models

● cortex-<foo>, neoverse-n1, ...
● “max” CPU model



5

Arm CPU models on QEMU: Where are we now?

KVM
● “host”/”max CPU model
● named CPU models not very useful

● good luck finding a model that matches your hardware...



6

Arm CPU models on QEMU: Where are we now?

CPU properties
● CPU features

● e.g. pauth
● tcg-specific properties

● e.g. pauth-impdef
● KVM-specific properties

● e.g. kvm-stealtime



7

What do we need?

Arm
 CPU m

odels in QEM
U



8

Arm CPU models on QEMU: What do we need?

Defining a CPU
● reproducible (same invocation gives the same CPU)
● future proof (new features can be easily added)
● working across different accelerators
● introspectible (knobs need to be discoverable)



9

Arm CPU models on QEMU: What do we need?

Compatibility handling
● depends on reproducible CPU definitions
● possible tie-in with compat machines
● limit to reasonably similar CPUs
● needs kernel support for KVM

● e.g. for limiting features



10

Arm CPU models on QEMU: What do we need?

MIDR and other fun
● we need to handle errata
● and subtle differences in behaviour for CPUs in different boards
● To what level should tcg emulate this?



11

How can we achieve it?

Arm
 CPU m

odels in QEM
U



12

Arm CPU models on QEMU: How can we achieve it?

Named CPU models
● Option 1: architecture versions (e.g. Arm v8.6)

● Problem: hard to figure out from a given CPU
● Problem: lots of optional features, so still very heterogeneous

● Option 2: named models, as today
● Problem: many CPUs exist, and more will exist in the future
● Problem: CPUs may come in slightly different variations, especially in different boards

● Option 3: stick with Frankenmonster CPUs
● i.e. build a CPU model, assign a uuid, and make it reproducible



13

Arm CPU models on QEMU: How can we achieve it?

CPU properties
● if it may differ between systems, we need a way to tweak it
● if it is visible in /proc/cpuinfo in Linux, we need a way to tweak it
● if it is a CPU specific implementation defined feature, we need a way to tweak it
● ...and all of this makes it grow into a large zoo of properties...



14

Arm CPU models on QEMU: How can we achieve it?

Accelerator support
● with tcg, CPU models control what is being emulated

● restrictions mostly come from the board
● with KVM, CPU models need to be based on what is supported by the host

● restrictions come from the board, the host hardware, and the actual version of the accelerator



15

Arm CPU models on QEMU: How can we achieve it?

Configuring it
● the user needs to get “reasonable” defaults when they don’t care about details
● management software like libvirt needs to be able to introspect options



16

Arm CPU models on QEMU: How can we achieve it?

Open questions
● How much flexibility?

● Complete roll-your-own vs some constraints (e.g. no v8.9 features on a basically v8.0 CPU)
● How much compatibility? 

● Same vCPU on wildly different hosts vs small tweaks on basically the same host system
● Do we need to expose every erratum and implementation detail, or can we limit ourselves to a subset?



17

Arm CPU models on QEMU: How can we achieve it?

Let’s discuss :)



CONFIDENTIAL Designator

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

18 

Red Hat is the world’s leading provider of enterprise 

open source software solutions. Award-winning 

support, training, and consulting services make 

Red Hat a trusted adviser to the Fortune 500. 

Thank you


