
2023 | Non-confidential

June 2023

KVM Forum, Brno

Handling Complex Guest
MMIO Exits with eBPF
Will Deacon <will@kernel.org>

2023 | Non-confidential2023 | Non-confidential

$ whoami

● Upstream kernel hacker

● Arm64 co-maintainer

● Android systems team at Google

● pKVM developer

● Homebrewer

● I’d rather be fishing

2023 | Non-confidential

Disclaimer!
● I don’t know anything about eBPF

● This is a work-in-progress; eBPF is a moving target

● I’m not convinced it’s a sensible idea! Hoping to inspire…

● But it’s cool and I fixed a bug

● “Conference-driven development” (I have a prototype)

2023 | Non-confidential

01Motivation

2023 | Non-confidential

Basic model for I/O handling in KVM

Host kernel

KVM

systemd

KVM

VMM
(e.g. QEMU) …

Host

Guest kernel

Application

User

OS Kernel

Hypervisor

Guest

write(2)

vring

writel()io_mem_abort()

KVM_EXIT_MMIO

2023 | Non-confidential

Vhost model for I/O handling in KVM

Host kernel

KVM

systemd

KVM

VMM
(e.g. QEMU) …

Host

Guest kernel

Application

User

OS Kernel

Hypervisor

Guest

write(2)

vring

writel()io_mem_abort()

Vhost

2023 | Non-confidential2023 | Non-confidential

Limitations of vhost
Vhost is widely used to accelerate virtio devices,
but it has some limitations:

• Thousands of lines of device-specific C code

running in the host kernel

• Only supports virtio; other devices are handled

either in userspace or via device-specific

KVM_CREATE_DEVICE emulation

• The VMM still needs built-in device knowledge to

instantiate and manage the in-kernel state

• Hard/impossible to update at runtime

• In-kernel emulation code is privileged and cannot be

sandboxed

2023 | Non-confidential2023 | Non-confidential

“Haha, maybe we should use eBPF to handle guest
exits!”

🍻

2023 | Non-confidential2023 | Non-confidential

“No, seriously.”

😐

2023 | Non-confidential2023 | Non-confidential

Can eBPF save the day?

Pros:

● In-kernel sandbox using verifier

● Programs uploaded at runtime

● Flexible/portable ABIs (user and
kernel)

● It’s fashionable (good for conference
submissions ;))

Cons:

● Atypical use-case

● Fairly rigid permissions/ACL model

● It’s fashionable (moving very quickly)

2023 | Non-confidential

02KVM_DEV_TYPE_BPF

2023 | Non-confidential

eBPF model for I/O handling in KVM

Host kernel

KVM

systemd

KVM

VMM
(e.g. QEMU) …

Host

Guest kernel

Application

User

OS Kernel

Hypervisor

Guest

write(2)

writel()io_mem_abort()

eBPF
JIT

attach()

2023 | Non-confidential

Managing the new device type

● Device instantiated via KVM_CREATE_DEVICE VM ioctl()
○ KVM_DEV_BPF_ATTR_GROUP_REGION attribute to set a

new MMIO range and attach bpf progs:

#define KVM_DEV_BPF_ATTR_GROUP_REGION 1
struct kvm_bpf_user_region {

 __u64 addr;

 __u64 size;

 __s32 bpf_readfd;

 __s32 bpf_writefd;

};

○ Envisage a similar approach for vIRQs (eventfds)
■ i.e. Associate eventfds with a region and allow them

to be signalled from the eBPF programs

KVM_DEV_TYPE_BPF: Programming interface

File handles returned by bpf(2)
BPF_PROG_LOAD system call.
(libbpf makes this easy)

2023 | Non-confidential

View from the eBPF program

● Passed a single context pointer argument by the kernel:
○ struct bpf_kvm_io_ctx {

 __u8 buf[8];

 __u64 offset;

 __u8 len;

 __u32 :24;

 __u32 vcpu_id;

};

○ Verifier enforces fine-grained permissions on the struct
members (e.g. buf is read-only for the MMIO write
handler).

○ Return value from handler:
■ 0: return to guest (skipping faulting instruction)
■ Non-zero: MMIO exit to the VMM

KVM_DEV_TYPE_BPF: Programming interface

This structure is fake and never
allocated! JIT generates accesses
to the real structures underneath
(e.g. the internal vCPU structure)

2023 | Non-confidential2023 | Non-confidential

BYOD: ELF
encapsulation
Wrap the device in an ELF file for libbpf

● Implement read/write callbacks in C (or
rust)

● eBPF maps for global device state
● ELF note to describe the device

configuration such as device-tree
compatible string, MMIO size, number of
IRQs etc.

● Device.o: ELF 64-bit LSB
relocatable, eBPF, version 1
(SYSV), with debug_info, not
stripped

● Different to the usual “skeleton” header
approach

Warning: linkers really don’t seem to like linking this, so I
did terrible things with objcopy 😒

.maps
eBPF data
structures

kvm_io_read
kvm_io_write
eBPF programs to attach to

the MMIO callbacks

.note

.kvm-bpf

.mmio-device

ELF note describing
device configuration

(e.g. size of MMIO
region)

2023 | Non-confidential

Putting it all together

MMIO
read/write
functions

ELF note
device

description

Compile to
eBPF w/
llvm &

partial link

Device.o
relocatable

ELF file

VMM

lkvm run --bpf Device.o

Host kernel

eBPF
sandbox

KVM_DEV_TYPE_BPF

BPF
helpers

VM MMIO exits

2023 | Non-confidential

Wish me luck.

ABSOLUTELY NO WARRANTY etc. etc.

Live demo

2023 | Non-confidential

03Scheduler hooks
(with help)

Saravana!

David!

2023 | Non-confidential

Set capacity for guest thread to migrate

Host - 181ms to Fmax on big CPU.

VM - 140ms to Fmax on little CPU. Guest thread never migrates to vCPU1 pinned to big CPU.

Source: Saravana’s LPC ‘22 talk: https://lpc.events/event/16/contributions/1195/

2023 | Non-confidential2023 | Non-confidential

Add a new cpufreq driver in the
guest:

● VMM pins the vCPUs

● Guest cpufreq driver advertises
host CPU properties (e.g.
available frequencies, capacity)

● Guest frequency requests result
in uclamp utilization requests on
the host

The guest frequency requests need
to reach the host:

● New hypercall(s)?

● MMIO device?

● Guess what’s coming…

It is critical to minimise the latency
when processing a guest request:

● Fast-path accesses (e.g. reading
current frequency every
context-switch)

● Pure overhead: the guest is
runnable

● State of the system can change

Guest frequency requests Communication channel Latency

Problem:
“Workloads running in a guest VM get terrible task

placement and DVFS behavior when compared to running the same
workload in the host”

https://lore.kernel.org/all/20230330224348.1006691-1-davidai@google.com/

2023 | Non-confidential

A tiny amount of eBPF code (< 80 lines)!

New eBPF helper functions for:

● Querying CPU state:

○ bpf_get_cpu_freq(cpu)

○ bpf_get_cpu_max_hw_freq(cpu)

○ bpf_get_cpu_scale(cpu)

● Setting desired uclamp values:
○ bpf_set_current_uclamp(min,max)

These all have corresponding user-accessible interfaces
already (sysfs, sched_setattr()).

VCPUFreq device
in eBPF

How does it
perform?

Preliminary results in pKVM
(higher is better)

FIO test Baseline Userspace
MMIO eBPF MMIO

Seq write 1.0 1.10 1.15

Rand write 1.0 1.13 1.23

Seq read 1.0 1.03 1.05

Rand read 1.0 1.05 1.09

2023 | Non-confidential

04Show me the code

2023 | Non-confidential

I have hacks!

git://git.kernel.org/pub/scm/linux/kernel/git/will/linux.git kvm/bpf

● Partial KVM_DEV_TYPE_BPF implementation
○ One memory region per device instance
○ vIRQs not functional yet
○ New program types instead of ‘BPF struct_ops’

● eBPF verifier codegen fix
● Scheduler helpers and minor sched_setattr() rework

https://android-kvm.googlesource.com/kvmtool willdeacon/bpf

● ELF note parsing and device-tree generation
● Libbpf to extract and load programs
● Instantiation of KVM_DEV_TYPE_BPF device
● Program attachment

Kvmtool

Host kernel

git://git.kernel.org/pub/scm/linux/kernel/git/will/bpf-devices.git

● Partial PL031 RTC emulation
● vCPUFreq device implementation
● ELF note generation
● Nasty build system hacks to avoid linker crashes
● Completely standalone

eBPF devices

https://android-review.googlesource.com/c/kernel/common/+/
2239182/21

● Guest driver for vCPUFreq device
● Currently per-vCPU register region

○ Banking an alternative?
● AMUs preferred if available

Guest kernel

2023 | Non-confidential

0105Amplify the crazy

2023 | Non-confidential

With great power, comes great… uncertainty?

This all feels quite powerful, but I’m nervous about the ABI and security implications of
some of these:

० Asynchronous device behaviour: blocking and signalling?

० bpf_copy_from_user() is bad, but what about bpf guest accessors? To specific windows?

० Vhost as a bpf program

० Finer-grained permissions for BPF programs (a la seccomp?)

० PCI devices (i.e. x86 support)

० Device migration (between VMMs!) using JSON map state

० Guest uploads devices as firmware… (too far?!)

० ⇒ Your idea here ⇐

2023 | Non-confidential2023 | Non-confidential

Conclusion

I think this is cool but I’m not precious

about it.

I’d love it if other folks could have a play

and see where they can take it.

The security story needs figuring out

properly for some future extensions.

What next?

2023 | Non-confidential

Thank you

