
Challenges Revisited

Supporting

Virtual CPU Hotplug
On

Architectures That Support CPU Hotplug

(like ARM64)

Challenges & Workarounds In Qemu

A Follow-up Presentation of KVMForum 2020: https://sched.co/eE4m
Salil Mehta (Huawei, Cambridge, UK)

James Morse (ARM, Cambridge, UK)

Date: 15th June 2023, 15:45–16:15 (Europe/Prague/Brno), Room 1

https://kvm-forum.qemu.org/2023/talk/9SMPDQ/

https://sched.co/eE4m
https://kvm-forum.qemu.org/2023/talk/9SMPDQ/

Overview 2

1) Motivation

2) Brief Anatomy: How Do We Setup ARM VCPU During VM Init?

3) Brief Anatomy: How Do We Setup ARM GIC During VM Init

4) VCPU Hot-plug Impediments: KVM Init (Recap)

5) VCPU Hot-plug Impediments: Guest Kernel Init (Recap)

6) Workaround: to KVM Init Impediments

7) Workaround: to Guest Kernel Init Impediments

8) Qemu Challenges: to Realize VCPU Hotplug

9) Qemu Workarounds: Creative Hack – Which Works! Really?

10) Prototype Code: Repositories & Upstreaming

11) Q&A

Motivation: of Supporting VCPU Hot-plug on ARM like Platforms 3

❑ Required by Cloud Vendors as part of the orchestration framework which could adjust

resource requests (CPU and Mem requests) for the containers in a pod, dynamically based

on usage or SLA(Pay-as-you-grow).

❑ Should have look-and-feel of x86_64 platform VCPU hot-plug feature

❑ For example, to support Kata-containers (Light Weight VMs) with Qemu/ARM64

o Kata Containers VM starts with a minimum amount of resources, (hot-plug everything)

▪ allowing for faster boot time and

▪ reduction in memory footprint.

o As the container launch progresses, devices are hot-plugged to the VM.

Terminology: From the ACPI Perspective 4

❑ Possible VCPUs = Maximum possible VCPUs in a VM

❑ Present VCPUs = which are present but further need to be ‘enabled’. Cannot be used,

❑ Enabled VCPUs = which are ‘present’ and can be ‘onlined’ (PSCI) for use

Brief Anatomy: How Do We Setup ARM VCPU During VM Init? (1)

❑ QOM ARM CPU Object & KVM VCPU object

❑ Allocation & Initialization

❖ Various per-cpu features (PMU, SVE etc.)

❑ Realization

❖ Creation KVM VCPU (KVM_CREATE_VCPU)

▪ Alloc of 'struct kvm_vcpu'

▪ Initialization of various per-cpu data-structures

▪ Setup Timer, PMU, debug etc

▪ Config of SGIs, PPIs

▪ Associated VGIC CPU interface initialization

❖ Initialization of KVM VCPU (KVM_ARM_VCPU_INIT)

❖ Qemu CPU Thread Exec (KVM_RUN)

5

Brief Anatomy: How Do We Setup ARM GIC During VM Init (2) 6

❑ GIC Initialization (Qemu & KVM)

❑ Initialize GICV3 data structures (distributor, redistributor, cpu) in QEMU

❑ KVM VGIC CPU interface initialization (KVM_CREATE_VCPU)

❑ Initialize the GIC Distributor in KVM

❖ Various SPIs, vITS alloc etc. (KVM_DEV_ARM_VGIC_CTRL_INIT)

❖ IO Devs and memory regions – only once! (KVM_RUN)

▪ Requires all KVM vCPU redistributors have been setup. (?)

▪ vgic_v3_map_resources() and declare VGIC ready.

❖ Base address (KVM_VGIC_V3_ADDR_TYPE_DIST)

❑ Initialize the GIC redistributor in KVM

❖ IO Devs, memory regions, Base address (KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION)

❑ Initialize GIC CPU Interface Register Info (like for ICC_CTLR_EL1) in Qemu Model

❖ Required to get actual supported reg config from KVM

VCPU Hotplug Impediments: KVM Init (Recap)

1) All ARM VCPUs MUST be created in the Host KVM at VM Init

❑ Number of VCPUs in the System cannot change after Init (ARM CPU Arch Req)

❖ VCPU related features Init: Timers, PMU, Debug, private IRQs(= SGIs, PPIs...) etc. (KVM_CREATE_VCPU)

❑ Sizing of VGIC in Host KVM can only happen once (Number of VCPUs) (ARM CPU Arch Req?)

❖ Like VGIC Redistributor KVM iodevs, Memory Regions etc. (KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION)

❖ Association: VGIC Redistributor <=> VGIC CPU

2) VCPUs once created in KVM cannot be destroyed. (Limitation of KVM)

7

VCPU Hotplug Impediments: Guest Init (Recap)

1) Guest Kernel MUST see all ARM VCPUs specified by ACPI MADT GICC at Boot time (ARM CPU Arch Req)

❑ Number of VCPUs in the Guest Kernel cannot change after Boot

❑ Number of Redistributors exposed to Guest Kernel cannot change after boot

❑ Association: VGIC Redistributor <=> VGIC CPU cannot change

2) VCPUs specified at Guest Kernel Boot by ACPI cannot be ‘un-plugged’ (ARM CPU Arch Req)

8

Workaround: to KVM Init Impediments (Recap)

1) No workarounds! Host KVM Initialization Should remain unchanged (Requirement from ARM Maintainers)

2) Fake VCPU Hot-{un}plug at VMM/Qemu level

3) Hence, No other option than to Create all KVM VCPUs at VM Init

❑ Only Change power state of VCPUs When 'faking' hot-unplug in Qemu

4) Size GICV3 once

❑ GIC Redistributor KVM iodevs, Memory Regions etc. – Yah! All of that!

❑ Initialize GICR and GIC CPU Interface association in KVM once at VM Init

5) No need to destroy 'struct kvm_vcpu’. Keep them parked in powered down state

9

Workaround: to Guest Kernel Init Impediments (Recap)

What we Can’t Do?

1) Number of Booted VCPUs & GIC redistributors Should remain unchanged (ARM Arch Req)

What we Can do?

2. Support to defer ‘Online’ing’ the VCPUs to a later time when Guest has booted (Details in James Morse ppt)

❑ Introduce new ‘online-capable’ Bit in ACPI MADT Table GIC CPU Interface ‘flag’ field [1]

❖ GICC = ‘Enabled’ (must be ‘online’d’ during boot) or

❖ GICC = ‘online-capable’ (can be deferred ‘online’ing’ after Guest Kernel boots)

3. Enabled or Disabled CPU in Guest Kernel? evaluate(_STA) for CPU

❑ Enabled CPU (In Guest) = Plugged VCPU (In Qemu) = _STA.PRESENT=1 _STA.ENABLED=1 (ACPI Status)

❑ Disabled CPU (In Guest) = Un-Plugged VCPU (In Qemu) = _STA.PRESENT=1 _STA.ENABLED=0 (ACPI Status)

10

[1] ACPI specification 6.5 "Table 5.37: GICC CPU Interface Flags"

https://uefi.org/specifications

Long Story Short: Feels Like Hotplug. But It Isn’t! 11

1. Guest Kernel (MADT/GICC, online-capable = 1)

▪ Plugged (cold, hot)? Present = 1 , Enabled = 1 (ACPI Status)

▪ Unplugged (cold, hot)? Present = 1, Enabled = 0

▪ ACPI Enumerate only Plugged i.e. register_cpu() sysfs

▪ Attempt Online (via PSCI) (Subject to VMM Policy)

Covered In Previous Next Slides

+

Accompanying James Morse’s Slides

2. Qemu (Workarounds)

▪ Realize only Plugged: (cold, hot) vCPUs (Qemu Threads)

▪ Park KVM VCPUs: Unplugged QOM CPUs (KVM Power Off)

▪ Lie to the Guest: about the ‘Presence’ of vCPUs

▪ Fake Hotplug: at QOM

▪ Deny Online’ing: Unplugged vCPUs (SMCC/HYP Handle)

3. Host KVM (No Workarounds: Arch Constraints)

▪ Possible vCPUs : Fully Initialize

▪ Unplugged vCPUs: Powered Down

▪ VGIC : Fully Initialize

▪ Exit HVC/SMC: CPU_{ON,OFF} to VMM (Policy Check)

Coming-up In Next Slides

Covered In Previous Next Slides

+

Accompanying James Morse’s Slides

Qemu Challenges: to Realize VCPU Hotplug (1)

1. Customer requirement: x86_64 look-and-feel of VCPU Hotplug on ARM (Different Architectures)

❑ How to fake VCPU Hot-plug at Qemu when KVM & Guest Kernel don’t support it? (Problem-1) >>

❑ QMP Command 'device_{add, del}' – How to use same interface?

$ device_add host-arm-cpu, id=core4, core-id=4

$ device_del core-id=4

❑ VM boot time should be comparable to x86_64 (hot-plug should not degrade)

2. At VM init, Qemu CPU Objects MUST be created for each Host KVM VCPUs. (KVM Constraint)

❑ What should we do to CPU Objects for ’yet-to-be-plugged’ VCPUs (after Init)? (Problem-2) >>

❖ Keep 'not-plugged' VCPUs realized? (CPU Threads will always exist – Boot time?)

❖ Unrealized 'not-plugged' VCPU CPU objects can't be migrated (VMSD registration?)

❖ Delete or keep them disabled after KVM initialization has finished?

12

Qemu Challenges: to Realize VCPU Hotplug (2)

3. Qemu MUST fully 'realize' GIC V3 to correctly initialize Host KVM VGIC (KVM Constraint CPU Arch)

❑ GIC V3 State MUST be pre-sized with all the 'possible' VCPUs (no escape?)

❑ All redistributors state must pre-exists (even for not-plugged VCPUs)

❑ GIC init, access operations or updates can only be performed on 'Enabled' VCPUs (Problem-3) >>

4. Guest MUST see all VCPUs as ‘present' in MADT GICC CPU interface at boot (ARM CPU Arch Req)

❑ Present ACPI _STA.PRESENT=1 _STA.ENABLED={0,1} to Guest, Always! (Problem-4) >>

❑ 'not-plugged' Qemu VCPUs: show as 'disabled’ i.e. ACPI _STA.ENABLED=0 (Conflicts with QOM State)

13

Qemu Challenges: to Realize VCPU Hotplug (3)

5. What if in future ARM CPU Arch supports Physical CPU Hotplug? (ARM CPU Arch says ’assume nothing’)

❑ Can Qemu implementation be generic enough in the following cases (Problem-5) >>

❖ Virtual CPU Hotplug Only

❖ Physical CPU Hotplug Only

❖ Both Virtual & Physical Hotplug co-exists

❑ How should Qemu distinguish these cases and tell Guest about compatibility?

❖ Should Guest evaluate(_OSC)?

14

Qemu Workarounds: Creative Hack – Which Works! Really? (1)

❑ Oh Yes! That thin Red line between Bravery/Madness, Bug/Feature, Creativity/Hack

❖ Allow me to call it a Creative Hack? But is it Acceptable to the community? You decide!

Approach-1: To mitigate the 5 Qemu problems discussed earlier

1. Use existing device_{add, del} hot-plug device interface (Mitigation-1) <<

❑ a new CPU object in Qemu shall be created for a hot-plugged VCPU

❑ On VCPU hot-unplug, CPU object shall be destroyed

❑ Update the GICV3 about this event (re-patching GICC <-> VCPU) (Deviation from ARM Arch. Okay?)

15

[1] Rough Qemu Boot Time Figures Presented At Linaro Open Discussion Meeting

https://linaro.atlassian.net/wiki/spaces/LOD/pages/26836405719/2021-3-22+Meeting+Meeting+notes?preview=/26836405719/26842366512/Linaro%20Presentation-VCPUHP-QEMU-time-figures-Monday%2022nd%20March%202021.pdf

Qemu Workarounds: Creative Hack – Which Works! Really? (2)

2. Creation, initialization and realization for {cold, hot-}plug VCPUs (Mitigation-2) <<

❑ During VM Init, create and initialize all 'possible' CPU objects

❑ Only 'realize' VCPUs which are cold plugged (-smp cpus 4 maxcpus 6) (CPU Threads)

❖ Including cold-plugged VCPUs added using '-device' option

❖ Will end up creating, initializing and running KVM VCPUs (KVM_{CREATE_VCPU, ARM_CPU_INIT, RUN})

❑ Do not 'realize' un-plugged (will be ‘hot plugged’) VCPUs CPU Objects (i.e. No CPU Threads)

❖ Only create & initialize KVM VCPU at Host KVM (KVM_CREATE_VCPU, KVM_ARM_VCPU_INIT)

❖ Above strategy also drastically saves Boot time [1] (a requirement for Kata Containers)

16

[1] Rough Qemu Boot Time Figures Presented At Linaro Open Discussion Meeting

https://linaro.atlassian.net/wiki/spaces/LOD/pages/26836405719/2021-3-22+Meeting+Meeting+notes?preview=/26836405719/26842366512/Linaro%20Presentation-VCPUHP-QEMU-time-figures-Monday%2022nd%20March%202021.pdf

Qemu Workarounds: Creative Hack – Which Works! Really? (3)

3. Qemu GICV3 full Realization (Mitigation-3) <<

❑ No Workarounds for below (ARM CPU Architecture Constraint)

❖ Pre-size GICv3State with 'possible’ vCPUs but use only 'enabled’ (no escape here)

❖ Create all the GICV3 Redistributors for all ‘possible’ vCPUs both in Qemu & KVM

▪ All related Memory Regions will be created in Qemu and initialized in KVM

❑ Some subtle changes are required for realization, initialization, access and updates for GICV3

❖ GICV3 realization: only assign ‘enabled’ vCPUS [GICv3State->GICv3CPUState->CPUState]

❖ Initialize the GICV3 CPU interface registers to KVM values (on vCPU reset)

▪ GICv3 CPU interface Reginfo (ICC_CTLR_EL1) for newly plugged vCPUs need to be init again.

▪ .resetfn(): fetch value of ICC_CTLR_EL1 from KVM.

17

Qemu Workarounds: Creative Hack – Which Works! Really? (4)

❑ Some subtle changes are required for realization, initialization, access and updates for GICV3 (Contd.)

❖ Restrict VCPU updates for re-patching GICv3CPUState to 'enabled' VCPUs (plug/hotplug event)

❖ Restrict KVM device access (get/put) of GICC registers to 'enabled' VCPUs (kvm_gic{c,d,r}_access)

❖ Why? State sync up for example for pre_save, post_load, reset_hold (putting back to kvm) etc.

4. What update does on VCPU {Un-}Plug events?

❑ Match GIC CPU Interface: ‘mp-affinity’  GICR_TYPER (All the GIC CPU Interface)

❖ Match Found? VCPU Hot Unplug Event : VCPU Hotplug Event

❑ Adjust: GIC CPU Interface VCPU = Hot plugged VCPU (Deviation from ARM CPU Arch. Okay?)

❑ Initialize GIC CPU Interface Registers info again in Qemu (VCPU Hotplug)

18

Qemu Workarounds: Creative Hack – Which Works! Really? (5)

5. Guest can defer online'ing/enabling the VCPU after boot. [ARM Arch Complaint] (Mitigation-4) <<

❑ Use ACPI MADT GICC CPU Interface flag 'online-capable' Bit [1] in Qemu.

❑ VCPUs in Guest can be brought '{on, off}line' when Qemu hot-{un}plugs them

❖ Will involve ACPI hot-plug handshake between Qemu and Guest Kernel

❖ Handshake events: Device-Check/Eject-Request/Eject Ej0/_STA

6. Qemu MUST distinguish between ACPI _STA.PRESENT and _STA.ENABLED. Update Guest Kernel as,

❑ _STA.PRESENT=1 and _STA.ENABLED=1 for 'plugged' VCPUs in Qemu

❑ _STA.PRESENT=1 and _STA.ENABLED=0 for 'not-plugged' VCPUs in Qemu (Faking Present – Okay?)

7. Implement _OSC AML method to return to the guest about (Mitigation-5) <<

❑ Hotplug ‘Enabled’ or ‘Present’ Support

19

[1] ACPI specification 6.5 "Table 5.37: GICC CPU Interface Flags"

https://uefi.org/specifications

[1] KVMForum 2020 VCPU Hotplug Slide: VCPU Hotplug Events

VM Init in A Nutshell: Qemu, KVM, Kernel (AARCH64)
19A

Hidden Backup Slide For Discussion Only: (Not To Be Presented)

https://static.sched.com/hosted_files/kvmforum2020/2c/Oct 29_Challenges in Supporting Virtual CPU Hotplug in SoC Based Systems like ARM64_Salil Mehta.pdf?_gl=1*1knu21f*_ga*MTI5MTg1MjA4Ny4xNjg2MjE1Njg2*_ga_XH5XM35VHB*MTY4NzM3NTA3NC41LjAuMTY4NzM3NTA3NC4wLjAuMA..

VM Init Sequence: Qemu, KVM, ACPI, Kernel (AARCH64)
19B

Hidden Backup Slide For Discussion Only: (Not To Be Presented)

19CComparison: Virtual CPU Hotplug ACPI Event Seq (x86_64 vs AARCH64)

[1] KVMForum 2020 VCPU Hotplug Slide: VCPU Hotplug Events

Hidden Backup Slide For Discussion Only: (Not To Be Presented)

https://static.sched.com/hosted_files/kvmforum2020/2c/Oct 29_Challenges in Supporting Virtual CPU Hotplug in SoC Based Systems like ARM64_Salil Mehta.pdf?_gl=1*1knu21f*_ga*MTI5MTg1MjA4Ny4xNjg2MjE1Njg2*_ga_XH5XM35VHB*MTY4NzM3NTA3NC41LjAuMTY4NzM3NTA3NC4wLjAuMA..

[1] KVMForum 2020 VCPU Hotplug Slide: VCPU Hotplug Events

Hotplug Sequence: Qemu, KVM, ACPI, Kernel (AARCH64)
19D

Hidden Backup Slide For Discussion Only: (Not To Be Presented)

https://static.sched.com/hosted_files/kvmforum2020/2c/Oct 29_Challenges in Supporting Virtual CPU Hotplug in SoC Based Systems like ARM64_Salil Mehta.pdf?_gl=1*1knu21f*_ga*MTI5MTg1MjA4Ny4xNjg2MjE1Njg2*_ga_XH5XM35VHB*MTY4NzM3NTA3NC41LjAuMTY4NzM3NTA3NC4wLjAuMA..

[1] KVMForum 2020 VCPU Hotplug Slide: VCPU Hotplug Events

Comparison: Virtual CPU Hot-Unplug ACPI Event Seq (x86_64 vs AARCH64)
19E

Hidden Backup Slide For Discussion Only: (Not To Be Presented)

https://static.sched.com/hosted_files/kvmforum2020/2c/Oct 29_Challenges in Supporting Virtual CPU Hotplug in SoC Based Systems like ARM64_Salil Mehta.pdf?_gl=1*1knu21f*_ga*MTI5MTg1MjA4Ny4xNjg2MjE1Njg2*_ga_XH5XM35VHB*MTY4NzM3NTA3NC41LjAuMTY4NzM3NTA3NC4wLjAuMA..

[1] KVMForum 2020 VCPU Hotplug Slide: VCPU Hotplug Events

Hotunplug Sequence: Qemu, KVM, ACPI, Kernel (AARCH64)
19F

Hidden Backup Slide For Discussion Only: (Not To Be Presented)

https://static.sched.com/hosted_files/kvmforum2020/2c/Oct 29_Challenges in Supporting Virtual CPU Hotplug in SoC Based Systems like ARM64_Salil Mehta.pdf?_gl=1*1knu21f*_ga*MTI5MTg1MjA4Ny4xNjg2MjE1Njg2*_ga_XH5XM35VHB*MTY4NzM3NTA3NC41LjAuMTY4NzM3NTA3NC4wLjAuMA..

Approx. VM Init Time: With Varying VCPUs

[1] VM Init Time Discussion: Linaro Open Discussions Date: 22-03-2021

SN Stage of VM Init Realized = 1, Unrealized = 127 Realized = 128, Unrealized = 0

1 Pre vCPU Init ~25 msec ~40 msec

2 Post vCPU Init (But Pre-VGIC Init) ~40 msec (+15) ~240 msec (+200)

3 Post GIC Init ~70 msec (+30) ~340 msec (+100)

4 Pre Linux Kernel Load ~90 msec (+20) ~360 msec (+20)

5 Post Kernel Load (But Pre SMBIOS setup) ~120 msec (+30) ~410 msec (+50)

❑ Qemu VCPU Realization involves spawning of vCPU threads and KVM_RUN IOCTL calls which can be avoided for

unplugged VCPUs. This improves VM Init time and mem footprint. Can we can defer spawning of Qemu threads even

for plugged till they are online’d using SMCC Exit calls to Qemu? (scope of optimization? – an experiment-in-progress!)

❑ Below figures were taken to measure the impact of the VCPU realization i.e. spawning of Qemu threads and KVM_RUN

IOCTL on the VM init time. Total possible vCPUS = 128. ‘N’ Realized VCPUs = ‘N’ vCPU Threads in Qemu.

19G

Hidden Backup Slide For Discussion Only: (Not To Be Presented)

https://linaro.atlassian.net/wiki/spaces/LOD/pages/26836405719/2021-3-22+Meeting+Meeting+notes

Prototype Code: Repositories & Upstreaming 20

1. [PATCH RFC 0/4] Changes to Support *Virtual* CPU Hotplug for ARM64 (Salil Mehta/Xiongfeng Wang)
o https://lore.kernel.org/all/20200625133757.22332-1-salil.mehta@huawei.com/

2. [PATCH RFC 00/22] Support of Virtual CPU Hotplug for ARMv8 Arch (Salil Mehta/Keqian Zhu)
o https://lore.kernel.org/qemu-devel/20200613213629.21984-1-salil.mehta@huawei.com/

3. Latest Qemu Prototype (Pre RFC V2)

o https://github.com/salil-mehta/qemu.git virt-cpuhp-armv8/rfc-v1-port11052023.dev-1 (Salil Mehta)

4. Latest Kernel Prototype (Pre RFC V2 = RFC V1 + Fixes)

o https://git.gitlab.arm.com/linux-arm/linux-jm.git virtual_cpu_hotplug/rfc/v2 (James Morse)

https://lore.kernel.org/all/20200625133757.22332-1-salil.mehta@huawei.com/
https://lore.kernel.org/qemu-devel/20200613213629.21984-1-salil.mehta@huawei.com/
https://github.com/salil-mehta/qemu.git
https://git.gitlab.arm.com/linux-arm/linux-jm.git

Acknowledgements
1. Marc Zyngier (Google)

2. James Morse (ARM)

3. Jean-Philippe Brucker (Linaro)

4. Lorenzo Pieralisi (Linaro)

5. Keqian Zhu (Huawei)

6. Xiongfeng Wang (Huawei)

7. Jonathan Cameron (Huawei)

8. Shameerali Kolothum Thodi (Huawei)

9. Will Deacon (Google)

10. Catalin Marinas (ARM)

11. Russel King (Oracle)

12. Miguel Luis (Oracle)

13. Vishnu Pajjuri (Ampere)

14. Sudeep Holla (ARM)

15. Andrew Jones (Redhat)

14. Igor Mamedov (Redhat)

15. Gavin Shan (Redhat)

16. Darren Hart (Ampere)

17. Ilkka Koskinen (Ampere)

18. Karl Heubaum (Oracle) and all those I have missed out!

21

22

Q & A

Comments: We Can Discuss?

23

Thanks

To the Wonderful Audience & All The Organizers of The KVMForum2023

