
© 2023 Arm

Suzuki K Poulose
14th June 2023

Arm CCA – KVM Support

KVM Forum 2023

2 © 2023 Arm

Agenda
Introduction to Arm CCA
• Arm v9 - Hardware Architecture - FEAT_RME
• Arm CCA Software Architecture

RMM Host services
RMM Guest Services
Realm VM
Realm Life Cycle
REC Scheduling

KVM Support
Current Status
Arm CCA – Future

3 © 2023 Arm

Arm v9 Realm Management Extensions – FEAT_RME

Traditionally Arm has two security states
• Secure and Non-Secure

4 Exception Levels (Privilege levels)
• EL3 highest, EL0 lowest

Introduces two new security state
(Physical Address Space - PAS)
• Secure – EL0, EL1, EL2, EL3
• Non-Secure – EL0, EL1, EL2
• Root – Only EL3
• Realm – EL0, EL1, EL2

4 © 2023 Arm

Arm v9 Realm Management Extensions – FEAT_RME

Dynamic PAS check via Granule Protection
Checks (GPC)
• Stage 3, described by Granule Protection

Table
• GPT Keeps track of the PAS of each 4K

Granule
• Maintained by EL3 firmware, Root World
• Access violations result in Granule Protection

Fault
EL3 can change the PAS of a granule by updating
GPT

5 © 2023 Arm

Arm CCA Software Architecture

EL3 Monitor

Linux / KVM Secure PMRMM

RSI

Realm A

RMI

Realm B

RSI

VMM

Root World

VM

Normal World

Trusted Services

Trusted OS

IM
PDEF

Realm World Secure World

HOST_CALL

EL2

EL1

EL0

EL3

6 © 2023 Arm

Arm CCA - Software Architecture
Reference Software Architecture using Arm v9 FEAT_RME
Enables Confidential Computing VMs on Arm
• Running VMs in the Realm World (R-EL1, R-EL0)
• Removes access to the VM private data / state
• NS-Host retains management of the VM
• Protected from the Normal and Secure world

Introduces a new firmware at Realm EL2 – Realm Management Monitor
• Part of Confidential VM’s TCB
• Architected software component, RMM Specification v1.0
• Developed in collaboration with Arm partners
• Reference implementation from TrustedFirmware.org – TF-RMM
• Loaded by at boot time by EL3 firmware
• Part of the Platform Attestation report

RMM Specification defines
• Services to the Host for managing VMs aka Realms via RMI
• Services to the Realm including Realm Service Interface (RSI)

https://developer.arm.com/documentation/den0137/latest
https://www.trustedfirmware.org/projects/tf-rmm/

7 © 2023 Arm

Arm CCA – Host Services - Realm Management Interface
RMI Version
• Major version and minor version (v1.0)

RMM Feature discovery
• SVE, PMU, LPA2, IPA Size etc.

Move a Granule (4KB) between Non-Secure ó Realm
Life Cycle management of Realm VM
Manage Realm Execution Context(REC) aka Virtual CPUs
• Create with initial register state (measured)
• Schedule RECs and handle exits
• Inject virtual interrupts

Manage memory for the Realms
• Add / Remove memory
• Manage Stage2 page table - monitored

Service stage2 faults

8 © 2023 Arm

Arm CCA – Services to the Realm
Ensure correctness of the Host actions
• The IPA Space of the Realm is split to half

Protected (lower) IPA with RMM guarantees
Unprotected IPA (higher) with no security guarantees

• Monitor RMI operations and provide security guarantees for Protected IPA

Realm specific services via Realm Service Interface (RSI)
• Query Realm configuration
• Manage Realm IPA State(RIPAS) – see later
• Communicate with the Host – RSI_HOST_CALL. (SMCCC compliant HVC)

Attestation and Measurement
• Platform Measurements – HW / Firmware including RMM
• Realm Initial measurements – Host actions before activate – Data, CPUs etc
• Realm Extendable Measurements

Isolation from other Realms

9 © 2023 Arm

Arm CCA – Realm VM (KVM view)

Linux / KVM RMM

VMM

EL2

VM

Normal World

struct
kvm

Realm World

rec

Realm
VM

Stage2 Stage2

RMI ABI

KVM UABI
vGIC LR

vGIC

RD – Realm Descriptor
REC- Realm Execution Context
RMI – Realm Management Interface

EL1

EL0

RD

rec

rec

vcpu

vcpu

vcpu

10 © 2023 Arm

Arm CCA – Realm VM
RMM manages Realm via Objects in Realm PAS
• Host donates memory via RMI_GRANULE_DELEGATE

VM described by Realm Descriptor (RD) - struct kvm equivalent
• Created via RMI_REALM_CREATE(RmiRealmParameters)

Choose Hash Algorithm, IPA Size, SVE?, PMU? etc
Root Stage2 page table pages

• Holds Realm Initial Measurements (RIM)

VCPUs are described by Realm Execution Context (REC) objects
• Created via RMI_REC_CREATE(RD, REC_Granule, REC_Params)
• Saves vCPU context, Previous exit reason (Host Calls, MMIO etc), Outstanding requests
• Variable storage via REC_Params.aux, depending on features (e.g., SVE_VL)

Stage2 Page table pages - Realm Translation Table, RTT
• Created via RMI_RTT_CREATE
• Reference counted for each protected mapping
• Holds additional metadata (when Inactive) – Host state (HIPAS) and Realm IPA State (RIPAS)
• Host can read an RTT entry using RMI_RTT_READ_ENTRY

© 2023 Arm

Arm CCA – Realm Life
Cycle

12 © 2023 Arm

Realm Life Cycle

Create Populate Activate Run Destroy

Realm State NEW ACTIVE

Host Actions

SYSTEM_OFF

13 © 2023 Arm

Realm Life Cycle

Create Populate Activate Run Destroy

Create a Realm (RD)
with Parameters

Realm State NEW ACTIVE

• Measured parameters (Hash
Algo, SVE, IPA Size, PMU etc)

• Unmeasured parameters
(e.g.,Stage2 Root tables)

Host Actions

SYSTEM_OFF

14 © 2023 Arm

Realm Life Cycle

Create Populate Activate Run Destroy

Realm State NEW ACTIVE

Configure

Configure the Realm
Parameters

• UABI changes to configure
measured parameters (Hash
Algo, SVE, IPA Size, PMU etc)

Host Actions

SYSTEM_OFF

15 © 2023 Arm

Realm Life Cycle

Create Populate Activate Run Destroy

Load initial memory images,
Create RECs

Realm State NEW ACTIVE

• Initialize “IPA” to RAM.
• Initial Data is optionally

measured (RIM).
• RECs must be created in the

ascending order of MPIDR
Host Actions

SYSTEM_OFF

16 © 2023 Arm

Realm Life Cycle

Create Populate Activate Run Destroy

Set the Realm Live and
Ready to Run

Realm State NEW ACTIVE

• No further Data modifications
allowed in the Protected IPA
Space.

• RECs cannot be created.

Host Actions

SYSTEM_OFF

17 © 2023 Arm

Realm Life Cycle

Create Populate Activate Run Destroy

Run the Realm by scheduling
RECs

Realm State NEW ACTIVE

• RECs can be scheduled via
RMI_REC_ENTER

• Realm Exits with EXIT reasons to
Host and relevant info

Host Actions

SYSTEM_OFF

18 © 2023 Arm

Realm Life Cycle

Create Populate Activate Run Destroy

Destroy the Realm and reclaim
resources.
Realm could issue PSCI_SYSTEM_OFF

Realm State NEW ACTIVE SYSTEM_OFF

Host Actions

19 © 2023 Arm

Arm CCA – REC Scheduling
RECs once created, the context is invisible to the
host
RECs scheduled via RMI_REC_ENTER(Rec,
RmiRecRun)
• Inject Virtual Interrupts
• Return MMIO reads to Unprotected IPA

Inject Sync. External Abort
• Service Host Calls
• Trap WFI/WFE

Returns on Realm EXIT
• Exit Reason with sufficient info
• VGIC State
• Timer State
• PMU Overflow

struct rec_entry {

 /* MMIO, SEA, WFx */
 u64 flags;

 /* GPRS */

/* VGIC Registers */
}

struct rec_exit {
 u64 exit_reason;

 /* Fault Info */
 /* GPRs */
 /* GICv3 Registers */
 /* Timer State */
 /* Set IPA State Request */
}

© 2023 Arm

Arm CCA – KVM Support

21 © 2023 Arm

Arm CCA – KVM Support
Design principles
• Reuse as much common code as possible

UABI, Guest Enter/Exit handling, VGIC
Add hooks for special handling in common code
§ kvm_is_realm() / vcpu_is_rec()

• Hide and contain RMM interactions

RMM Support advertised via new CAP: KVM_CAP_ARM_RME
Realm as new VM type at KVM_CREATE_VM
• Bits[11:8] : 0 = Normal, x = Realm, y = ..

Realm Configuration (for missing params) via KVM_CAP_ARM_RME
• Hash Algorithim, SVE Vector Length, Realm Personalization Value
• Switch to VM attribute ?
• Move some VCPU attributes to VM attributes ?

SVE vector length, PMU, Debug BP/WP registers

22 © 2023 Arm

Arm CCA – KVM Support
Realm Life Cycle managed via KVM_CAP_ARM_RME
• Initialize IPA State to RAM State for DRAM
• Load initial image to Protected IPA
• Set the Realm ACTIVE

VCPUs set KVM_ARM_VCPU_REC
• REC Creation via KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_REC)
• May be do this from the kernel in the order of MPIDRs in one shot ?

vCPU Scheduling follows common code, use RMM_REC_ENTER for the switch
• Sync GPRs (HOST_CALL, MMIO read), vGIC state to rec_entry
• Request WFx trap

Realm Exit handled separately
• Sync GPRs , vGIC state, Timer State from rec_exit
• Handle any Realm world specific exits
• Fallback to normal KVM handling for common exits (stage2 aborts)

23 © 2023 Arm

Arm CCA – KVM Memory Management
Stage2 controlled by RMM
• Fixed 4K with variable IPA Size, L2 Block mapping (2M), LPA2
• KVM support depends on CONFIG_ARM64_4K_PAGES

KVM donates RTT pages
• No shadow page tables

No support for paging
• Memory must be pinned by the VMM

Restricted mem support – in progress/plan.
• For RFC posts – Use normal anonymous memory, until it is merged

Load the initial image for the Realm
• Realm Initial State Measurement provides the guarantee for Realm

Service “runtime” Stage2 aborts
Stage2 tear down and reclaim memory
• Move back to Normal world

24 © 2023 Arm

Arm CCA - Support for RMM v1.0 - Status
RMMv1.0-eac2 was publicly released on 7th June 2023
RFC Series with RMM v1.0-Beta0 support (27th Jan 2023)
• KVM, Linux Guest based on v6.0
• kvm-unit-test and kvmtool

Qemu support by Linaro
RFC Series : Guest UEFI firmware Support
Rebasing the work to RMM v1.0-eac2
• Closely following the restrictedmem series

Improve and generalize the UABI – Feedback please
Add kselftests to stressing KVM driver/Linux
Work in progress : Remote attestation flow Support
• Boot Information Injection support
• Guest Linux – Attestation/Measurement framework

https://lore.kernel.org/all/20230127112248.136810-1-suzuki.poulose@arm.com/
https://lore.kernel.org/qemu-devel/20230127150727.612594-1-jean-philippe@linaro.org/
https://edk2.groups.io/g/devel/message/103581

25 © 2023 Arm

Arm CCA – Future
Devices Assignment for Realm
• Allow (PCI)Devices access to/from Realm Memory – PCI TDISP
• RMM to act as Trusted Security Manager (TSM)
• Designing the low-level flow and RMM ABI
• Keen to align with the “Generic” Linux/KVM story

Partitioning of Realm Privilege Levels – Planes
• Foundation for vTPM in Realm, with higher privilege than the OS
• Design in progress

Per Realm Memory Encryption Keys
Paging
Live Migration

© 2023 Arm

Arm CCA - Realm IPA
State Management

27 © 2023 Arm

Arm CCA – Realm IPA State Management
Realm’s IPA space (controlled by ipa_size) is split into two halves.
• protected - BIT(ipa_size – 1) == 0. RMM guarantees integrity
• unprotected – BIT(ipa_size – 1) == 1 - No RMM guarantees

Each “protected” IPA page has a state (Realm IPA State – RIPAS)
• Controlled by Realm with the help of RMM, acknowledged by the Host
• EMPTY - default state. Any access causes Synchronous External Abort to Realm
• RAM – An area that is used as RAM memory by Realm, faults exits to Host
• DESTROYED – An area that is untrusted due to Host operation (e.g. DATA destroyed)

Dynamic memory sharing with fixed memory
• A Guest – Host(KVM) agreement. Not mandated by RMM
• All of guest RAM is protected
• Realm sharing a page with IPA “x” follows

RSI_IPA_STATE_SET(x, EMPTY) – Exits to Host, host requests RMM
Realm access (x | BIT(ipa_size – 1)) . Update ”stage1”

• Keeps VMM memory layout unchanged (e.g., IO, PCI regions etc at lower end of IPA)

© 2023 Arm

Arm CCA – Linux Guest
Support

29 © 2023 Arm

Arm CCA – Linux Guest Support
Realm {I}PA State Management Support
• Kernel image (image-header.size) and FDT must be marked as RAM (by host)
• Scan FW description and initialize all of memory as RAM

UEFI behavior – TBD

Detection of IPA size
• Restrict PHYS_SHIFT_MASK to (ipa_size – 1)
• BIT (ipa_size – 1) – Treated as a prot bit – “PROT_NS_SHARED”
• Force SWIOTLB bounce buffering

Host memory sharing
• BIT(ipa_size – 1) is treated PROT_NS_SHARED
• Force page level mapping for Linear map
• Plugged into set_memory_{en/de}crypted()

Virtio forced to use DMA API - (via VIRTIO_F_ACCESS_PLATFORM)
GIC ITS Tables – Allocated as shared
All I/O as non-secure by default - ioremap()adds PROT_NS_SHARED

© 2023 Arm

Thank You
Danke

Gracias
Grazie
谢谢

ありがとう
Asante
Merci

감사합니다
ध"यवाद

Kiitos
ارًكش

ধন#বাদ
הדות

© 2023 Arm

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

© 2023 Arm

Backup

© 2023 Arm

Arm CCA - Realm IPA
State Management

34 © 2023 Arm

Arm CCA – Realm IPA Management

RAM

EMPTYRealm IPA Space

Protected Unprotected

UNPROTECTED

35 © 2023 Arm

Arm CCA – Realm IPA Management

RAM

EMPTYRealm IPA Space

Protected Unprotected

UNPROTECTED

VMM allowed to INIT a
granule to RAM for loading

DATA before
REALM_ACTIVATE

36 © 2023 Arm

Arm CCA – Realm IPA Management

RAM

EMPTYRealm IPA Space

Protected Unprotected

UNPROTECTED

Realm must mark any IPA that
is DRAM as RAM, at init.

Low-cost operation

37 © 2023 Arm

Arm CCA – Realm IPA Management

RAM

EMPTY

UNPROTECTED

Realm IPA Space

Protected IPA Unprotected IPA

38 © 2023 Arm

EL3 Monitor

Linux / KVM Secure PM

VMM

Root World

VM

Normal World

Trusted Services

Trusted OS

IM
PDEF

Secure World

EL2

EL1

EL0

EL3

