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OUTLINES

▸ A quick re-cap on live migration 

▸ Postcopy limitations, challenges 

▸ Three optimizations 

▸ Channel separation, huge page, thread model 

▸ Performance Results 

▸ Future works



WHAT IS POSTCOPY?

▸ Allows the VM to start running with partial RAM (compared to precopy) 

▸ Trap page faults when page missing (userfaultfd) 

▸ Always converges



WHAT IS POSTCOPY PREEMPTION?

▸ A new capability (“postcopy-preempt”) introduced for postcopy-only 

▸ Need to be enabled on both src/dst QEMU 

▸ Not compatible with vanilla postcopy 

▸ No extra configuration needed 

▸ Direct performance improvement on the speed of handling page faults 

▸ More test results at the end
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LIVE MIGRATION (PRECOPY COMPLETED)
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LIVE MIGRATION (PRECOPY COMPLETED)
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LIVE MIGRATION (PRECOPY, BUT RUN ON DST?)
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LIVE MIGRATION (POSTCOPY)
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POSTCOPY LIMITATIONS

▸ Split brain, e.g. network failures during postcopy 

▸ Postcopy recovery (since QEMU v3.0.0) 

▸ High page request latency 

▸ For huge pages… 

▸ Hugetlb double map allows page to be mapped in PAGE_SIZE 
https://lore.kernel.org/all/20220624173656.2033256-1-jthoughton@google.com/ 

▸ Page transfers are slow even for small pages for QEMU 

▸ An average of 12ms on directly attached 10Gbps network for random access

https://lore.kernel.org/all/20220624173656.2033256-1-jthoughton@google.com/


ISSUE 1 - BACKGROUND PAGE FLUSH
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SOLUTION 1 - CHANNEL SEPARATION
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ISSUE 2 - HUGE PAGE GRANULE

▸ QEMU sends pages always in huge page granule 

▸ Before finish sending one huge page, we cannot send another page 

▸ An urgent page cannot preempt sending of a background huge page 

▸ Why? 

▸ QEMU receiving page using temp huge page buffers, which are limited



ISSUE 2 - HUGE PAGE GRANULE
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SOLUTION 2 - HUGE PAGE PREEMPTIONS
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ISSUE 3 - MIGRATION THREAD ITSELF!

▸ “migration_thread” is the thread to save VM on src QEMU 

▸ Background sendmsg() blocks not only itself but all the rest (e.g. sending urgent page) 

▸ The only thread to migrate a guest page, due to 

▸ Legacy state maintenances (RAMState, PageSearchState, bitmaps, etc.) 

▸ Required by all kinds of features (compression, XBZRLE, multifd, etc.) 

▸ Compression: distribute raw pages to compressor threads 

▸ XBZRLE: global xbzrle state maintenance 

▸ Multifd: entrance of page distributions



SOLUTION 3 - ???

▸ Refactor global states into per-channel ones 

▸ Turning PageSearchStatus into a per-channel structure, one for each channel 

▸ Manage page ownerships, aka: 
When there are >1 threads sending, who should send which page? 

▸ Who took the bitmap bit (protected by bitmap_mutex) 

▸ Make sure to release any global lock during sending (e.g. sendmsg() could block) 

▸ Send pages outside migration_thread 

▸ How about… the return thread???? 

▸ Drop page request queue, because we don’t need it anymore!



(A RECAP ON PREVIOUS…)
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SOLUTION 3 - REUSE RETURN THREAD TO SEND PAGES
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PERFORMANCE NUMBERS

▸ VM: 20 cpus, 20GB mem, 1 busy random write workload over 18GB 

▸ Test program: mig_mon mm_dirty -m 18000 -p random 
https://github.com/xzpeter/mig_mon 

▸ Measure average page fault latencies 
https://github.com/xzpeter/small-stuffs/blob/master/tools/huge_vm/uffd-latency.bpf 

▸ Results (~50x speedup in 4K average page request latency) 

▸ Vanilla: 12093 (us) 

▸ Preempt Full (solution 1+2+3): 229 (us)

https://github.com/xzpeter/mig_mon
https://github.com/xzpeter/small-stuffs/blob/master/tools/huge_vm/uffd-latency.bpf


DISTRIBUTIONS OF LATENCIES



FUTURE WORK

▸ Postcopy preempt part 1 merged in v7.1.0 (including solution 1+2) 
https://lore.kernel.org/qemu-devel/20220707185342.26794-1-peterx@redhat.com/ 

▸ Postcopy preempt part 2 RFC posted (including solution 3), during review 
https://lore.kernel.org/qemu-devel/20220829165659.96046-1-peterx@redhat.com/ 

▸ Comments welcomed

https://lore.kernel.org/qemu-devel/20220707185342.26794-1-peterx@redhat.com/
https://lore.kernel.org/qemu-devel/20220829165659.96046-1-peterx@redhat.com/

