
POSTCOPY PREEMPTION
PETER XU <PETERX@REDHAT.COM>

mailto:peterx@redhat.com


OUTLINES

▸ A quick re-cap on live migration 

▸ Postcopy limitations, challenges 

▸ Three optimizations 

▸ Channel separation, huge page, thread model 

▸ Performance Results 

▸ Future works



WHAT IS POSTCOPY?

▸ Allows the VM to start running with partial RAM (compared to precopy) 

▸ Trap page faults when page missing (userfaultfd) 

▸ Always converges



WHAT IS POSTCOPY PREEMPTION?

▸ A new capability (“postcopy-preempt”) introduced for postcopy-only 

▸ Need to be enabled on both src/dst QEMU 

▸ Not compatible with vanilla postcopy 

▸ No extra configuration needed 

▸ Direct performance improvement on the speed of handling page faults 

▸ More test results at the end



LIVE MIGRATION (PRECOPY)

SRC 
VM

DST 
VM

Dirty Page

Stall PageClean Page

Missing Page

RUNNING STOPPED

Page Stream



LIVE MIGRATION (PRECOPY COMPLETED)

SRC 
VM

DST 
VM

Dirty Page

Stall PageClean Page

Missing Page

RUNNING STOPPED

Page Stream



LIVE MIGRATION (PRECOPY COMPLETED)

SRC 
VM

DST 
VM

RUNNINGSTOPPED



LIVE MIGRATION (PRECOPY, BUT RUN ON DST?)

SRC 
VM

DST 
VM

Dirty Page

Stall PageClean Page

Missing Page

RUNNING STOPPED

Page Stream



LIVE MIGRATION (POSTCOPY)

SRC 
VM

DST 
VM

Missing Page

RUNNINGSTOPPED

Page Requests

Page Stream

Messages

Clean Page



LIVE MIGRATION (POSTCOPY)

SRC 
VM

DST 
VM

Missing Page

RUNNINGSTOPPED

Page Requests

Page Stream

Messages

Background Page

Urgent Page



POSTCOPY LIMITATIONS

▸ Split brain, e.g. network failures during postcopy 

▸ Postcopy recovery (since QEMU v3.0.0) 

▸ High page request latency 

▸ For huge pages… 

▸ Hugetlb double map allows page to be mapped in PAGE_SIZE 
https://lore.kernel.org/all/20220624173656.2033256-1-jthoughton@google.com/ 

▸ Page transfers are slow even for small pages for QEMU 

▸ An average of 12ms on directly attached 10Gbps network for random access

https://lore.kernel.org/all/20220624173656.2033256-1-jthoughton@google.com/


ISSUE 1 - BACKGROUND PAGE FLUSH

Page Requests

Page Stream

Messages

Background Page

Urgent Page

RETURN THREAD

PAGE QUEUE

MIGRATION THREAD

BLOCKED BY BACKGROUND PAGES

PAGE RESOLVE

PAGE FAULT 
HANDLER



SOLUTION 1 - CHANNEL SEPARATION

Background Page Stream

Messages
RETURN THREAD

PAGE QUEUE

MIGRATION THREAD

Urgent Page Stream

PAGE RESOLVE

PAGE FAULT 
HANDLER

FAST PAGE 
RESOLVE

Page RequestsBackground Page

Urgent Page



ISSUE 2 - HUGE PAGE GRANULE

▸ QEMU sends pages always in huge page granule 

▸ Before finish sending one huge page, we cannot send another page 

▸ An urgent page cannot preempt sending of a background huge page 

▸ Why? 

▸ QEMU receiving page using temp huge page buffers, which are limited



ISSUE 2 - HUGE PAGE GRANULE

MIGRATION THREAD

5

Urgent Page Stream

PAGE RESOLVE

FAST PAGE 
RESOLVE

Background PageUrgent Page

6

7 8

9 10

11 12

Background Page Stream

1 2

3 4

BLOCKED BEFORE SENDING WHOLE HOST BACKGROUND HOST PAGE



SOLUTION 2 - HUGE PAGE PREEMPTIONS

MIGRATION THREAD

5

Urgent Page Stream

PAGE RESOLVE

FAST PAGE 
RESOLVE

Background PageUrgent Page

6

7 8

2

3 4

Background Page Stream

19 10

11 12

SEND URGENT PAGE RIGHT AWAY



ISSUE 3 - MIGRATION THREAD ITSELF!

▸ “migration_thread” is the thread to save VM on src QEMU 

▸ Background sendmsg() blocks not only itself but all the rest (e.g. sending urgent page) 

▸ The only thread to migrate a guest page, due to 

▸ Legacy state maintenances (RAMState, PageSearchState, bitmaps, etc.) 

▸ Required by all kinds of features (compression, XBZRLE, multifd, etc.) 

▸ Compression: distribute raw pages to compressor threads 

▸ XBZRLE: global xbzrle state maintenance 

▸ Multifd: entrance of page distributions



SOLUTION 3 - ???

▸ Refactor global states into per-channel ones 

▸ Turning PageSearchStatus into a per-channel structure, one for each channel 

▸ Manage page ownerships, aka: 
When there are >1 threads sending, who should send which page? 

▸ Who took the bitmap bit (protected by bitmap_mutex) 

▸ Make sure to release any global lock during sending (e.g. sendmsg() could block) 

▸ Send pages outside migration_thread 

▸ How about… the return thread???? 

▸ Drop page request queue, because we don’t need it anymore!



(A RECAP ON PREVIOUS…)

Background Page Stream

Messages
RETURN THREAD

PAGE QUEUE

MIGRATION THREAD

Urgent Page Stream

PAGE RESOLVE

PAGE FAULT 
HANDLER

FAST PAGE 
RESOLVE

Page RequestsBackground Page

Urgent Page



SOLUTION 3 - REUSE RETURN THREAD TO SEND PAGES

Background Page Stream

Messages
RETURN THREAD

MIGRATION THREAD

Urgent Page Stream

PAGE RESOLVE

PAGE FAULT 
HANDLER

FAST PAGE 
RESOLVE

Page RequestsBackground Page

Urgent Page

PAGE QUEUE



PERFORMANCE NUMBERS

▸ VM: 20 cpus, 20GB mem, 1 busy random write workload over 18GB 

▸ Test program: mig_mon mm_dirty -m 18000 -p random 
https://github.com/xzpeter/mig_mon 

▸ Measure average page fault latencies 
https://github.com/xzpeter/small-stuffs/blob/master/tools/huge_vm/uffd-latency.bpf 

▸ Results (~50x speedup in 4K average page request latency) 

▸ Vanilla: 12093 (us) 

▸ Preempt Full (solution 1+2+3): 229 (us)

https://github.com/xzpeter/mig_mon
https://github.com/xzpeter/small-stuffs/blob/master/tools/huge_vm/uffd-latency.bpf


DISTRIBUTIONS OF LATENCIES



FUTURE WORK

▸ Postcopy preempt part 1 merged in v7.1.0 (including solution 1+2) 
https://lore.kernel.org/qemu-devel/20220707185342.26794-1-peterx@redhat.com/ 

▸ Postcopy preempt part 2 RFC posted (including solution 3), during review 
https://lore.kernel.org/qemu-devel/20220829165659.96046-1-peterx@redhat.com/ 

▸ Comments welcomed

https://lore.kernel.org/qemu-devel/20220707185342.26794-1-peterx@redhat.com/
https://lore.kernel.org/qemu-devel/20220829165659.96046-1-peterx@redhat.com/

