
Preserving IOMMU states during kexec
reboot
Fam Zheng

System Technology & Engineering team

Agenda
• Introduction

• Motivation
• Approach comparison
• VFIO-PCI review

• Live updating vfio-pci
• Stateful vs stateless
• Memory considerations
• Changeset review

• PoC and future plan

Introduction

• Long running VMs in cloud should run in a secure, up-to-date
hypervisor

• Challenge: how to roll out updates to:
• Fix security issues
• Fix functional bugs
• Bring feature/performance improvements

• Solutions:
• Live migration
• Live update

Live-migration
• Live-migration is ...

• To move the guest from one slot to
another

• Can resolve hw/sw issues while
doing this

• Save / load are usually very heavy
operations

• Challenges:
• Resource and time
• Converge
• Error recovery

Live-update
• A very special case of live-migration:

• Stay on the same host
• Carefully avoid excessive data copy

• Memory is shared
• Storage data can be accessed easily afterwards
• Better downtime than live-migration

 High bandwidth network for memory copy is not
needed
 2x memory is not required
 On extra host is not required
 - Cannot handle HW issue

Live-update: challenges
• Handing over states and resources can be trickier than live-

migration:

• Memory
• Network
• Passthrough devices

• Can host kernel be live updated too w/o compromising above?

Live-update: migrate to file
• Save state

• QEMU: migrate to <file>
• Update

• Reboot / exec to start new version
• QEMU and (optionally) kernel restart

• Load state
• QEMU: -incoming <file>

vfio-pci quick review
• Abstracting and exposing IOMMU to userspace VMM
• In order to support PCI device direct assigning
• Main tasks

• Mapping IOVA = GPA --> HPA
• Passthrough device to get MMIO doorbell notifications
• DMA to guest ram for accessing hw queue and data payloads

• Mapping INTX, MSI, MSI-X vectors --> irqfd
• Passthrough device to interrupt guest driver

• Most setups happen during VM creation:
• Guest memory layout are stable --> GPAs rarely change
• Guest pages are “pinned” --> HPAs never change

Live update: cpr reboot with
vfio-pci
• Suspend driver with qemu guest agent
• Save state

• QEMU: migrate to <file>
• Restart / reboot

• QEMU and (optionally) kernel restart
• Devices are torn down and reset

• Load state
• QEMU: -incoming <file>

• Resume guest
• system_wakeup, to re-initialize guest driver

https://patchew.org/QEMU/1658851843-236870-1-git-send-email-steven.sistare@oracle.com/

Live update: cpr exec with
vfio-pci
• Save state

• VFIO_DMA_UNMAP_FLAG_VADDR
• QEMU: migrate to <file>

• exec
• QEMU is replaced with a new binary
• Various vfio-pci related fds are preserved during exec

• (Unset FD_CLOEXEC)
• Load state

• QEMU: -incoming <file>
• VFIO_DMA_MAP_FLAG_VADDR

Quick recap
Approach Pro Con
Live migration - Well supported

- Can deal with hardware issue
- Resource hungry
- Higher user experience impact
- Converge problem
- Failure recovery is tricky

Live update (migrate to file) - Well supported - Memory is copied
- No vfio-pci support
- Very expensive to update
kernel

Live update (cpr reboot) - Update both QEMU and kernel - Need guest modification to
support vfio-pci

Live update (cpr exec) - Support vfio-pci with
unmodified guest

- Cannot update host kernel

Quick recap
Approach Pro Con
Live migration - Well supported

- Can deal with hardware issue
- Resource hungry
- Higher user experience impact
- Converge problem
- Failure recovery is tricky

Live update (migrate to file) - Well supported - Memory is copied
- No vfio-pci support
- Very expensive to update
kernel

Live update (cpr reboot) - Update both QEMU and kernel - Need guest modification to
support vfio-pci Really needed?

Live update (cpr exec) - Support vfio-pci with
unmodified guest

- Cannot update host kernel

Zooming into cpr reboot
• If we remove the guest agent, what could go wrong?

• When QEMU exits...
• vfio-pci teardown

• Old kernel shutdown...
• device_shutdown

• New kernel start...
• Device probe & reset

• New QEMU starts...
• New vfio fd, new DMA and intr mappings

• Inconsistent (broken) state from the guest driver PoV: ERROR!

Fix: Preserving the state
• The way the guest driver wants it:

• The device is not reset in the process

• Config space looks the same as before

• Implicitly, IOMMU, including DMA mappings, MUSTN'T reset
• Because DMA activities could happen during kernel reboot!

How?
• The key is static physical page allocations, that survive kexec

• Both guest ram pages and host DMAR pages are pinned.
• But the approaches are different

• INTR is destroyed and re-established, with a spurious notify in
the end

Pinning guest ram pages
• memmap=2G!6G

• ndctl create-namespace -m devdax

• $qemu ... \
-object memory-backend-file,id=mem,size=2G,mem-
path=/dev/dax1.0,share=on,align=2M \
-numa node,memdev=mem

Pinning IOMMU DMAR tables

• Introducing a static page allocator (KRAM) in kernel
• memmap=1G:4G（Reserves the region in user e820）

• Reserving a fixed area:
kram_get_fixed_page(area, index)

• Bitmap based allocation:
kram_alloc_page() / kram_free_page()

Pinning IOMMU DMAR tables
• IOMMU root entries are “fixed” if iommu.kram=1

• In iommu_alloc_root_entry()...

s/alloc_pgtable_page/kram_get_fixed_page

• DMAR pages are also in KRAM region so they are “stable”
during kexec

• in alloc_pgtable_page():

return kram_alloc_page()

vfio-pci integration
• Introduce “raw mode” group fd

• with VFIO_GROUP_SET_FLAGS

• Skip bus master bit reset during open/close/shutdown etc.

• Same for device reset and config space initialization

• Interrupts vectors are masked before shutdown and
unmasked after reboot

Are these enough?
• Unlikely, but let's get going first...

PoC: design and configuration
• Testing setup:

• QEMU with nested virtualization and virtual IOMMU
• $qemu -machine q35 -device intel-iommu,intremap=on -cpu host \

... -device e1000e,netdev=guestnet
• Patched L1 kernel with vfio-pci live-update support
• Patched QEMU to run L2:

• Applied CPR patches
• Use VFIO_GROUP_SET_FLAGS to set device in “raw mode”
• Added -restore <file> (to be merged into -incoming)

PoC: live-update procedure
• Start L2 with vfio-pci (e1000e)
• Stage new kernel and initrd with kexec_file_load in L1
• QMP cpr-save (tar file written to a DAX blockdev)
• reboot(RB_KEXEC)
• Start L2 again and load state

• Directly done in a custom /bin/init

PoC: result
• Guest resumes (packets seen on e1000e) within 160ms(*)
• Running on live-updated kernel and QEMU

(*): depends on the size of the test case and hardware configuration

Future plan
• Code clean-up, handle corner cases and errors

• More tests: test on baremetal, in KubeVirt, ...

• AMD and ARM support

• Further downtime reduction during kexec and new kernel boot

Thanks! Questions?
September 2022, KVM Forum, Dublin
Fam Zheng <fam.zheng@bytedance.com>

