
Klaus Jensen <k.jensen@samsung.com>

Samsung Electronics

I2C Multi-controller and

Controller Target Mode in QEMU

I’m an NVMe proliferator, why care about I2C?

• Because of the NVMe Management Interface

– Provides an out-of-band interface to manage NVMe devices

and enclosures

• Uses the Management Component Transport Protocol (MCTP)

– The NVMe-MI specification supports MCTP via SMBus/I2C or

PCIe VDM as the out-of-band communication paths

• This talk is about emulating the SMBus/I2C MCTP binding

Goals

1. Launch an emulated BMC platform with an NVMe-MI

device on an I2C bus

– due to MCTP, this requires the target device to be able to act

as a controller on the bus as well (more on that in a bit)

2. Communicate with that device using the Linux kernel
MCTP framework (the AF_MCTP socket)

– relies on i2c controller target mode support (more on that later)

The Management Component Transport Protocol

BMC Application

NVMe-MI Protocol

MCTP
Transport

Transport/physical binding

I2C, PCIe VDM, … Physical

• MCTP is a transport

independent protocol

• The unit of data transfer is

the Packet

– One or more packets may

be assembled into

Messages

• Messages are exchanged

between Endpoints

MCTP Packet

Medium Header

MCTP Packet Header

MCTP Packet Payload

Medium Trailer

• An MCTP packet consist of

1. a physical medium specific header and trailer

2. MCPT base specification defined packet header

3. semi-opaque packet payload to be interpreted by

an endpoint

• The MCTP packet header assists with

– identifying the MCTP protocol version

– packet routing (source and destination endpoint

identifiers)

– message assembly (e.g. sequence number)

Message Assembly

Medium Header

MCTP Packet Header

MCTP Packet Payload

Medium Trailer

Medium Header

MCTP Packet Header

MCTP Packet Payload

Medium Trailer

Message Header

Integrity Check

Message Integrity
check (if used) is
only present in
the final packet

Message header
only present in
the first packet

payload

I2C Basics

• I2C (“Inter-Integrated Circuit”)

• Synchronous, controller/target, two-line, serial

bus
– Controller controls the Serial Clock (SCL) line

– The Serial Data (SDA) line is used by both parties depending

on the transaction

I2C Basics

• Message-oriented

– Controller addresses a specific target by

transmitting the address on the bus

• If the target is on the bus, it will ACK by pulling the SDA

line

– Data is transmitted in frames of 8 bits, each ACK’ed

by the receiving party

START
ADDRESS

(7 bits)

R/W

(1 bit)

(N)ACK

(1 bit)

DATA

(8 bits)

(N)ACK

(1 bit)

DATA

(8 bits)

(N)ACK

(1 bit)
STOP

SMBus Block Write

• In the MCTP SMBus/I2C binding, all transactions are

based on the SMBus “Block Write” bus protocol

START
ADDRESS

(7 bits)

R/W

(1 bit)

(N)ACK

(1 bit)

COMMAND

(8 bits)

(N)ACK

(1 bit)

BYTE COUNT

(8 bits)

(N)ACK

(1 bit)

DATA

(8 bits)

(N)ACK

(1 bit)

DATA

(8 bits)

(N)ACK

(1 bit)

PEC

(8 bits)

(N)ACK

(1 bit)
STOP

SMBus Block Write

• In the MCTP SMBus/I2C binding, all transactions are

based on the SMBus “Block Write” bus protocol

START
ADDRESS

(7 bits)

R/W

(1 bit)

(N)ACK

(1 bit)

COMMAND

(8 bits)

(N)ACK

(1 bit)

BYTE COUNT

(8 bits)

(N)ACK

(1 bit)

DATA

(8 bits)

(N)ACK

(1 bit)

DATA

(8 bits)

(N)ACK

(1 bit)

PEC

(8 bits)

(N)ACK

(1 bit)
STOP

Number of
bytes

following

0xF (i.e.
“MCTP”)

Packet
Error Code

(CRC-8)

0 (i.e.
“write”)

SMBus Block Write (ala MCTP)

• Since MCTP uses Block Writes exclusively, the I2C

binding modifies the protocol slightly to include the

source address as the first data byte.

START
ADDRESS

(7 bits)

R/W

(1 bit)

(N)ACK

(1 bit)

COMMAND

(8 bits)

(N)ACK

(1 bit)

BYTE COUNT

(8 bits)

(N)ACK

(1 bit)

SOURCE

(8 bits)

(N)ACK

(1 bit)

DATA

(8 bits)

(N)ACK

(1 bit)

PEC

(8 bits)

(N)ACK

(1 bit)
STOP

First data
byte is the

source
address

Basic I2C Emulation in QEMU

• In QEMU, we model this with the I2CBus

– The I2C controller device model owns the bus and

targets are children on it

• Controllers sends START and STOP conditions
– int i2c_start_send(I2CBus *bus, uint8_t addr);

– void i2c_end_transfer(I2CBus *bus);

• Controller may act as transmitter or receiver
– int i2c_send(I2CBus *bus, uint8_t data);

– uint8_t i2c_recv(I2CBus *bus);

Basic I2C Emulation in QEMU

• In QEMU, we model this with the I2CBus

– The I2C controller device model owns the bus and

targets are children on it

• Controllers sends START and STOP conditions
– int i2c_start_send(I2CBus *bus, uint8_t addr);

– void i2c_end_transfer(I2CBus *bus);

• Controller may act as transmitter or receiver
– int i2c_send(I2CBus *bus, uint8_t data);

– uint8_t i2c_recv(I2CBus *bus);

(N)ACK indicated
by return value

Basic I2C Emulation in QEMU

• Bus targets implement the I2CTargetClass

– send(), recv() callbacks

• called from i2c_send(), i2c_recv()

– an event() callback

• in response to i2c_start_transfer(), i2c_end_transfer()

Single-controller Transactions

i2c controller

i2c target

i2c_send() / i2c_recv()

QEMU

i2c_start_transfer(bus, addr)

target->event(START_SEND)

i2c_send(bus, data)

target->send(data)

i2c_send(bus, data)

...

i2c_end_transfer(bus)

target->event(FINISH)

How does the target “reply”?

• MCTP uses controller-transmits exclusively

– How can the target device reply? (i.e. act as a controller)

– Spoiler Alert -

How does the target “reply”?

• MCTP uses controller-transmits exclusively

– How can the target device reply? (i.e. act as a controller)

– Spoiler Alert - it can’t

• The I2C core does not support multiple controllers

– However, nothing explicitly prevents a target device from

getting a reference to the bus and calling i2c_start_transfer()

• … it’s just a little wonky

Multi-controller Transactions

i2c_start_transfer(bus, addr)

target->event(START_SEND)

i2c_send(bus, data)

i2c_send(bus, data)

...

i2c_end_transfer(bus)

target->event(FINISH)

bus = qdev_get_parent_bus()

i2c_start_transfer(bus, addr)

target->event(START_SEND)

i2c_send(bus, data)

i2c_send(bus, data)

...

i2c_end_transfer(bus)

target->event(FINISH)

i2c_start_transfer(bus, addr)

...

i2c controller

i2c controller
i2c_send()

QEMU

i2c_send()

Recursive i2c_end_transfer() calls

A small “band aid” in
i2c_end_transfer() can

actually make this work. Sort of.

When in doubt - defer the problem...

• What does hardware do? Arbitration

– Just talk until I’m the only one talking

– Give up after a while and try again.

• In QEMU, we can have the controllers queue up nicely

in a line instead

– Register a callback (a bottom half) to be called when it is

my turn

Multi-controller Transactions

i2c_start_transfer(bus, addr)

target->event(START_SEND)

i2c_send(bus, data)

i2c_send(bus, data)

...

i2c_end_transfer(bus)

target->event(FINISH)

i2c_bus_acquire(bus, bh)

qemu_bh_schedule(bh)

bh

i2c_start_transfer(bus, addr)

target->event(START_SEND)

i2c_send(bus, data)

i2c_send(bus, data)

...

i2c_end_transfer(bus)

i2c_bus_release(bus)

i2c controller

i2c controller
i2c_send()

QEMU

i2c_send()

Solution: register and
schedule a bottom half

Multi-controller Transactions

i2c_start_transfer(bus, addr)

target->event(START_SEND)

i2c_send(bus, data)

i2c_send(bus, data)

...

i2c_end_transfer(bus)

target->event(FINISH)

i2c_bus_acquire(bus, bh)

qemu_bh_schedule(bh)

bh

i2c_start_transfer(bus, addr)

target->event(START_SEND)

i2c_send(bus, data)

i2c_send(bus, data)

...

i2c_end_transfer(bus)

i2c_bus_release(bus)

i2c controller

i2c controller
i2c_send()

QEMU

i2c_send()

The “bus owner” remains the
default Controller when no bus

child has acquired the bus

Solution: register and
schedule a bottom half

Not the Full Story

• Something must drive the

“requesting” controller?

– E.g. the Aspeed I2C host bus

driver

host i2c bus driver

i2c controller

i2c controller
i2c_send()

QEMU

i2c_send()

Host-driven Single-controller Transactions

host i2c bus driver

i2c controller

i2c target

i2c_send() / i2c_recv()

QEMU

aspeed_i2c_bus_write()

aspeed_i2c_bus_handle_cmd()

i2c_start_transfer()

aspeed_i2c_bus_raise_interrupt()

aspeed_i2c_bus_write()

aspeed_i2c_bus_handle_cmd()

aspeed_i2c_bus_send()

i2c_send()

aspeed_i2c_bus_raise_interrupt()

aspeed_i2c_bus_write()

aspeed_i2c_bus_handle_cmd()

i2c_end_transfer()

aspeed_i2c_bus_raise_interrupt()

i2c-set

Host-driven Multi-controller Transactions

i2c controller

i2c controller
i2c_send()

QEMU

aspeed_i2c_bus_write()

aspeed_i2c_bus_handle_cmd()

i2c_end_transfer()

target->event(FINISH)

i2c_bus_acquire(bus, bh)

qemu_bh_schedule(bh)

aspeed_i2c_bus_raise_interrupt()

bh

i2c_start_transfer()

i2c_send()

aspeed_i2c_bus_target_send()

aspeed_i2c_bus_raise_interrupt()

i2c_send()

aspeed_i2c_bus_target_send()

aspeed_i2c_bus_raise_interrupt()

. . .

i2c_end_transfer()

i2c_send()

host i2c bus driver
i2c-set

Host-driven Multi-controller Transactions

i2c controller

i2c controller
i2c_send()

QEMU

aspeed_i2c_bus_write()

aspeed_i2c_bus_handle_cmd()

i2c_end_transfer()

target->event(FINISH)

i2c_bus_acquire(bus, bh)

qemu_bh_schedule(bh)

aspeed_i2c_bus_raise_interrupt()

bh

i2c_start_transfer()

i2c_send()

aspeed_i2c_bus_target_send()

aspeed_i2c_bus_raise_interrupt()

i2c_send()

aspeed_i2c_bus_target_send()

aspeed_i2c_bus_raise_interrupt()

. . .

i2c_end_transfer()

i2c_send()

Overwrites
previously sent

byte if controller
doesn’t buffer it

The I2C Controllers models
does not implement

I2CTargetClass.
Who is the target of this?

Where does the
data go?

host i2c bus driver
i2c-set

How can the host read the reply?

• I2C controllers/drivers may support “Target Mode”

– Allows the host driver to

• read data sent to the controller when acting as a target-receiver,

or to

– Spoiler Alert -

How can the host read the reply?

• I2C controllers/drivers may support “Target Mode”

– Allows the host driver to

• read data sent to the controller when acting as a target-receiver,

or to

– Spoiler Alert - no controllers in QEMU supports this

• Oh, and, by the way, it breaks a fundamental rule in the i2c core

– All transfers must complete immediately

1st Problem

• Fix “All transfer must complete immediately”
– Introduce i2c_send_async() and START_ASYNC event

• Reuse the bottom half and turn it into a state machine

• Add an explicit i2c_ack() to schedule the bottom half

– Does not impact existing device models (they just need to
NACK the START_ASYNC event)

– Asynchronous device models (like board I2C controllers) can
choose not to implement the synchronous i2c_send()

2nd Problem

• Add Target Mode in the Aspeed I2C Controller

– Why the Aspeed? Because the Linux kernel driver supports

target mode for that, and

– in QEMU, the Aspeed I2C controller model authors left it as a

“fill in the blanks” exercise

• Surprisingly straight-forward given the kernel driver code

hw/i2c/aspeed_i2c.c | 89 +++++++++--

include/hw/i2c/aspeed_i2c.h | 8 +

2 files changed, 88 insertions(+), 9 deletions(-)

2nd Problem

• Add an AspeedI2CBusTarget as a target on the

AspeedI2CBus model

• Implement the target callbacks
– event()

• On START_SEND_ASYNC, set relevant interrupt bits

• On FINISH, set NORMAL_STOP interrupt bit

– send_async()

• Copy byte to BYTE_BUF register and set RX_DONE interrupt bit

• Call i2c_ack() when interrupt acknowledged

Host-driven Multi-controller Transactions

i2c controller

i2c target
i2c_send()

QEMU

host i2c bus driver
i2c-set

aspeed_i2c_bus_write()

aspeed_i2c_bus_handle_cmd()

i2c_end_transfer()

target->event(FINISH)

i2c_bus_acquire(bus, bh)

qemu_bh_schedule(bh)

aspeed_i2c_bus_raise_interrupt()

Host-driven Multi-controller Transactions

i2c target

i2c controller
i2c_ack()

QEMU

bh

i2c_start_send_async(bus, addr)

aspeed_i2c_bus_slave_event()

aspeed_i2c_bus_raise_interrupt(SLAVE_ADDR_RX_MATCH)

aspeed_i2c_bus_write()

i2c_ack(bus)

qemu_bh_schedule(bh)

bh

i2c_send_async(bus, byte)

aspeed_i2c_bus_slave_send_async()

aspeed_i2c_bus_raise_interrupt(RX_DONE)

aspeed_i2c_bus_write()

i2c_ack(bus)

qemu_bh_schedule(bh)

bh

i2c_end_transfer(bus)

aspeed_i2c_bus_slave_event()

aspeed_i2c_bus_raise_interrupt(STOP)

i2c_bus_release(bus)

i2c_send_async()

host i2c bus driver
i2c-set

aspeed_i2c_bus_write()

aspeed_i2c_bus_handle_cmd()

i2c_end_transfer()

target->event(FINISH)

i2c_bus_acquire(bus, bh)

qemu_bh_schedule(bh)

aspeed_i2c_bus_raise_interrupt()

Testing with a kernel target device

• Linux includes an EEPROM target device

– Create the target device on the bus
echo slave-24c02 0x1064 > /sys/bus/i2c/devices/i2c-15/new_device

i2c i2c-15: new_device: Instantiated device slave-24c02 at 0x64

– The device at 0x42 is a toy “echo” device that will write back to

an EEPROM what it is instructed to
• Write 0xAA at offset 0x00 to the EEPROM device on 0x64

i2cset -y 15 0x42 0x64 0x00 0xaa i

hexdump /sys/bus/i2c/devices/15-1064/slave-eeprom

0000000 ffaa ffff ffff ffff ffff ffff ffff ffff

0000010 ffff ffff ffff ffff ffff ffff ffff ffff

*

0000100

Putting it to work with MCTP

• Add an abstract MCTP I2C Target device model
– Handles the I2C encapsulation and message

assembly/disassembly

– Handles MCTP control messages

– Implements the send() and event() callbacks
• send() soaks up the I2C message

• event() verifies the message and delivers it to the deriving device
model on FINISH

– The deriving device calls i2c_mctp_schedule_send() when it has
processed the MCTP message

– The bottom half uses i2c_send_async() to send the response to the kernel
MCTP target device.

Putting it to work with MCTP

• Modify a device tree for an Aspeed 2600 EVB

#include "aspeed-ast2600-evb.dts“

#include <dt-bindings/i2c/i2c.h>

&i2c15 {

multi-master;

mctp-controller;

mctp@10 {

compatible = "mctp-i2c-controller";

reg = <(0x10 | I2C_OWN_SLAVE_ADDRESS)>;

};

};

Tells the kernel
mctp-i2c driver

to configure
target mode on

address 0x10

External Buildroot to get up and running quickly:
https://irrelevant.dk/g/buildroots.git/tree/mctp-i2c

Putting it to work with MCTP

[1.341308] mctp: management component transport protocol core

[2.814937] i2c-core: driver [mctp-i2c-interface] registered

[3.156248] i2c i2c-15: of_i2c: register /ahb/apb/bus@1e78a000/i2c-bus@800/mctp@10

[3.159257] mctp-i2c-interface 15-1010: probe

[3.173974] i2c i2c-15: client [mctp-i2c-controller] registered with bus id 15-1010

qemu-system-arm \

-nographic \

-M ast2600-evb \

-kernel output/images/zImage \

-initrd output/images/rootfs.cpio \

-dtb output/images/aspeed-ast2600-evb-nmi.dtb \

-device nmi-i2c,address=0x3a,eid=0x9 \

-serial mon:stdio

Putting it to work with MCTP

[1.341308] mctp: management component transport protocol core

[2.814937] i2c-core: driver [mctp-i2c-interface] registered

[3.156248] i2c i2c-15: of_i2c: register /ahb/apb/bus@1e78a000/i2c-bus@800/mctp@10

[3.159257] mctp-i2c-interface 15-1010: probe

[3.173974] i2c i2c-15: client [mctp-i2c-controller] registered with bus id 15-1010

qemu-system-arm \

-nographic \

-M ast2600-evb \

-kernel output/images/zImage \

-initrd output/images/rootfs.cpio \

-dtb output/images/aspeed-ast2600-evb-nmi.dtb \

-device nmi-i2c,address=0x3a,eid=0x9 \

-serial mon:stdio

mctp addr add 8 dev mctpi2c15

mctp link set mctpi2c15 up

mctp route add 9 via mctpi2c15

mctp neigh add 9 dev mctpi2c15 lladdr 0x3a

mi-mctp 1 9 info

NVMe MI subsys info:

num ports: 1

major ver: 1

minor ver: 1

NVMe MI port info:

port 0

type SMBus[2]

MCTP MTU: 64

MEB size: 0

SMBus address: 0x00

VPD access freq: 0x00

MCTP address: 0x3a

MCTP access freq: 0x01

NVMe basic management: disabled

