ORACLE

Hot-resizing of Windows VMs via Hyper-V Dynamic Memory protocol

Oracle

Maciej S. Szmigiero Linux Virtualization and Security September 13, 2022

Problem statement

- This talk describes a current attempt to add hot memory (RAM) resizing capability to QEMU Windows VMs, via their native Hyper-V Dynamic Memory protocol
- Why support Windows at all in Open Source / Free Software ecosystem?

Problem statement

- This talk describes a current attempt to add hot memory (RAM) resizing capability to QEMU Windows VMs, via their native Hyper-V Dynamic Memory protocol
- Why support Windows at all in Open Source / Free Software ecosystem?
- The same reason for other Windows-specific stuff like Samba: customers want it to not have to switch to 100% Windows-based solutions

Existing solutions

Why hot-resizable VMs?

Hard to forecast memory requirements with 100% accuracy

- Best if VM size grows smoothly together with its workload
 - At the same time nobody wants to pay for unused capacity
- Cloud customers don't like to reboot their VMs, for various reasons
 - Best if we can adjust the size without a guest reboot
- Potentially offer a "budget" hosting where customer VMs can get dynamically resized depending on their host occupacy

Existing solutions

Why hot-resizable VMs?

Hard to forecast memory requirements with 100% accuracy

- Best if VM size grows smoothly together with its workload
 - At the same time nobody wants to pay for unused capacity
- Cloud customers don't like to reboot their VMs, for various reasons
 - Best if we can adjust the size without a guest reboot
- Potentially offer a "budget" hosting where customer VMs can get dynamically resized depending on their host occupacy
- Let's review the existing VM resize solutions

Existing solutions

ACPI-based PC DIMM hotplug

Slot limit

- Only 256 memory slots in QEMU
- Just blindly increasing that limit probably won't scale too well
 - There are problems already with ACPI table size in some configurations
- Very high granularity
 - Side effect of the slot limit to reach the required guest size dynamic range
 - Makes removal of a module difficult since a single busy page can prevent it
- Ripple effect on removal possible

Ripple effect on removal

- There are 3 extra DIMMs plugged into the guest: A, B, C.
 - A and B are nearly empty, but C is nearly full.
- The host does not know anything which DIMM is empty and which is full

Ripple effect on removal

- There are 3 extra DIMMs plugged into the guest: A, B, C.
 - A and B are nearly empty, but C is nearly full.
- The host does not know anything which DIMM is empty and which is full
- It requests the guest to unplug the stick C
 - The guest copies the content of the stick C to the stick B

Ripple effect on removal

- There are 3 extra DIMMs plugged into the guest: A, B, C.
 - A and B are nearly empty, but C is nearly full.
- The host does not know anything which DIMM is empty and which is full
- It requests the guest to unplug the stick C
 - The guest copies the content of the stick C to the stick B
- Again, the host does not know anything which DIMM is empty and which is full, so it requests the guest to unplug the stick B
 - The guest now has to copy the same data from the stick B to the stick A, again

virtio-mem

- Large block size
 - Even 1 MiB (the current minimum) is 256 pages
 - Same problem as with DIMM hotplug, just not as severe
- No native Windows driver
 - There was some attempt presented at last year's DevConf.CZ by Marek Kędzierski,
 - see: https://www.youtube.com/watch?v=I_XvMBHzmDw
 - But it's still rather challenging

virtio-mem

- Large block size
 - Even 1 MiB (the current minimum) is 256 pages
 - Same problem as with DIMM hotplug, just not as severe
- No native Windows driver
 - There was some attempt presented at last year's DevConf.CZ by Marek Kędzierski,
 - See: https://www.youtube.com/watch?v=I_XvMBHzmDw
 - But it's still rather challenging
- Some of these issues are theoretically fixable
 - It's closed-source Windows we are talking about, not Linux
 - Would be much more invasive
 - This QEMU host driver is (almost) a self-contained solution

Ballooning

- Required to be able to hot-remove memory from guest with high granularity
 - Ballooning usually operates with single page (minimum) granularity
- Ballooning↔hot add driver integration desirable
 - This way balloon gets deflated first when increasing the guest size before attempting hot-add

Ballooning - virtio-balloon

- virtio-balloon is the current preferred QEMU ballooning solution
- The Windows driver actually marks the pages that were ballooned out as *in use* inside the guest
 - Prevents removing of the DIMM stick backing them
- This is a pure ballooning driver / protocol
 - No way to resize the guest up past its boot size
- Low performance due to operating on single pages
 - Probably fixable if it turns out to be a real performance bottleneck

Hyper-V Dynamic Memory protocol

Uses Hyper-V VMBus

- Neither bus nor protocol are documented in the Hyper-V Top Level Functional Specification
- QEMU host support already developed by Virtuozzo thanks guys!
- Linux kernel (client) drivers are a huge help
 - Don't document Windows-specific details
- Built-in support for this protocol in Windows Server 2012 R2, Windows Server 2016 and Windows Server 2019
- Hot-add support needs S4 disabled
 - Incompatible with some "VM freezing" solutions via its hibernation

Hyper-V Dynamic Memory protocol

- Good news: Windows seems to be rather determined to free the requested number of pages: waiting for the guest to reply to a 2 GiB balloon request sometimes takes 2-3 seconds
 - Possibly doing some kind of memory compaction during that time
 - Enforcing the balloon floor is best left to the guest
 - It knows best its internal memory requirements
- Somehow related to Dynamic Memory VM setting in Hyper-V
 - This only controls automatic VM size management
 - User requests will use the DM protocol regardless of this setting

hv-balloon driver

- A new QEMU VMBus driver was developed
 - Named hv-balloon after the Linux kernel client driver for the Dynamic Memory Protocol
 - And to follow the naming pattern established by the virtio-balloon driver
- This driver supports both memory hot-add / hot-removal and ballooning
 - Resizing currently plugged into QEMU ballooning commands (balloon and info balloon)
- What this driver is NOT
 - A cross-platform VM resizing driver
 - Currently x86 only, ARM64 maybe in a distant future
 - Linux guests aren't in scope

First implementation

- Using an universal backing devices for memory hot-add protocols
 - "haprots"
 - DM protocol registers as a provider for these
- Allows removing memory from guest in single page (4k) units
 - Via built-in ballooning operations support
- Careful not to trust the guest
 - Can maliciously report returning pages outside its current address space
 - These can later clash with the address range of hot-added memory

First implementation

Range trees

- Guest-released memory is tracked in range trees
 - As a series of (start, count) ranges
- Required a few new GTree operations
 - These were released as a part of Glib 2.68
 - Presence detected at configure time to allow building QEMU with older Glib versions

First implementation

Range trees

- Guest-released memory is tracked in range trees
 - As a series of (start, count) ranges
- Required a few new GTree operations
 - These were released as a part of Glib 2.68
 - Presence detected at configure time to allow building QEMU with older Glib versions
- This gave much better ballooning performance than virtio-balloon
 - 230 GB / minute versus 70 GB / minute on Xeon E5-2699

Haprot

- A haprot device works like a virtual DIMM stick
 - Allows inserting extra RAM into the guest at run time
- Some differences from the ACPI-based PC DIMM hotplug
 - Notifying the guest about the new memory range done via a protocol handler that registers with the haprot framework
 - The ACPI DIMM slot limit does not apply
 - Virtual DIMM size determined at insertion time
 - Protocol handler can inform the guest about removal of a haprot device and / or do its own cleanup

Scalable memslots

- Required since each hot-added memory region needs a new memslot
 - Doesn't apply to un-ballooned regions of course
- Operates on "pay as you go" basis, that is, that the user only pays the price of the memslot count that is actually used, not of the maximum count allowed
 - The previous implementation had quite a few linear scans
 - Allowed reasonable performance with the maximum memslot count increased to 32k
- Operation semantics were carefully matched to the original implementation
 - The outside-visible behavior did not change
- Makes lookup and memslot management operations O(log(n))

Scalable memslots

- Required since each hot-added memory region needs a new memslot
 - Doesn't apply to un-ballooned regions of course
- Operates on "pay as you go" basis, that is, that the user only pays the price of the memslot count that is actually used, not of the maximum count allowed
 - The previous implementation had quite a few linear scans
 - Allowed reasonable performance with the maximum memslot count increased to 32k
- Operation semantics were carefully matched to the original implementation
 - The outside-visible behavior did not change
- Makes lookup and memslot management operations O(log(n))
- Available in kernel 5.17

Summary

- This was just the first attempt / MVP
 - Still a lot of work to do
- Figure out what to do on guest reboot
 - Hyper-V seems to resize the boot memory to match the current guest size in this case
 - May need memslot resize operation... or not
 - We try to avoid re-launching QEMU
 - Currently, the virtual DIMM sticks are re-inserted after the guest reconnects to the DM interface
 - Marked not in use at reboot before re-insertion

Summary

- Avoid using virtual DIMM sticks as an unit of memory management
 - Will make it easier to directly control guest size from HMP
 - Avoids having to control QEMU via libvirt-like external entity
 - To listen for virtual DIMM becoming not in use and remove them
- Make NUMA aware
 - DM protocol hot remove request has a virtual_node member
 - Need to investigate how to tell Windows about the node number of hot added memory
- Allow hv-balloon + virtio-balloon coexistence
 - Covers both Linux and Windows guests
 - Maybe even integrate them as backends of a common user interface?

Laptop-scale live demonstration

Questions?

19 / 19 | Copyright © 2022 Oracle and/or its affiliates | Public | September 13, 2022

