
Deep Optimization of VMM Live Upgrade

Shenming Lu



Agenda

• Background

• Overview of VMM Live Upgrade

• Downtime Breakdown

• Optimizations

• Achievements



Background



Background

VMM live upgrade:
• upgrade the VMM (QEMU & KVM) without interrupting VMs

• add security patches and new features



Background

Main issue:
• minimizing service downtime is still the major concern of cloud providers

• downtime for large VM can be as long as several seconds



Overview of VMM Live Upgrade



Overview of VMM Live Upgrade

• Use fork+exec to load the new QEMU binary
- can inherit any fd from the old, including memfd…

• Use shared memory to sync and transfer
device state between the old and new

• Divide the kvm module into multiple duplicated
modules to also upgrade kvm



Downtime Breakdown



Downtime Breakdown
64 vCPUs, 256G memory, 1 multiqueue vhost-user-net device, 2 multiqueue vhost-user-blk devices

Main time cost:
• stop/start vhost-uesr devices
• transfer device state



Optimizations



Optimizations - Insight

Directly reuse the live migration framework to stop/start devices and 
transfer device state

efficient/necessary?

internal emulated devices external devices

still needed
unnecessary and can be optimizedbut limited number and lightweight



Optimizations - Transparent to Backends
Take vhost-user devices (DPDK/SPDK) for example

• Inherit the channels and shared fds between 
the VMM and vhost-user backends

• Use them directly in the new QEMU and skip 
the related init processes



Optimizations - Transparent to Backends
Make vhost-user backends unaware of in live upgrade:
• don’t stop the backends in the old QEMU
• skip all ‘set’ and some ‘get’ communications to the backends in the new



Optimizations - Transparent to Backends
Some issues:
• the backends keep running and may trigger IRQs even after the guest has paused, 

then the new kvm may miss the IRQs received and pending in the old
simply supplement IRQs unconditionally when finishing the upgrade

• if the backends crash or send SLAVE_* messages to the master, it is uncertain which 
QEMU will receive the messages…
the new QEMU start to listen on the slave channel only when finishing the 
upgrade, and if there is any backend crash or slave request, just fail this upgrade

• cause stale mem-table data in the backends
merely update the data or mmap the guest RAM at a fixed and very high address



Optimizations - Presave Config

• Virtqueue-related state in the data plane is 
kept in the guest and backends
- no need to transfer

• Config state is much less changed during 
the VM lifetime
- presave it before VM pause

keep a track of the config change, and retransfer
the state after VM pause if any change occurs



Optimizations - More Than Vhost-user

• Also apply to vfio, vhost…

• QEMU upgrade only mode
- inherit the kvm fds and skip the related init processes
- no need to sync the vCPU state from/to kvm



Achievements



Achievements - Downtime
• Effect of optimizations on downtime

-1- 16 vCPUs, 64G memory, 1 multiqueue vhost-user-net devices, 2 multiqueue vhost-user-blk devices
-2- 64 vCPUs, 256G memory, 2 multiqueue vhost-user-net devices, 10 multiqueue vhost-user-blk devices

-2--1-



Achievements - Packet Loss

• Effect of optimizations on packet loss

with-optimwithout-optim

much lower latency and no packet loss
64 vCPUs, 256G memory, 2 multiqueue vhost-user-net devices, 10 multiqueue vhost-user-blk devices



Thank You



Contact Info：lushenming@bytedance.com

Q & A




