Deep Optimization of VMM Live Upgrade

Shenming Lu

lii! ByteDance



. Agenda

» Background

* Overview of VMM Live Upgrade
* Downtime Breakdown

* Optimizations

 Achievements



Background




i Background

VMM live upgrade:
e upgrade the VMM (QEMU & KVM) without interrupting VMs

* add security patches and new features



i Background

Main issue:

* minimizing service downtime is still the major concern of cloud providers

» downtime for large VM can be as long as several seconds



Overview of VMM Live Upgrade




I Overview of VMM Live Upgrade

user space

init
suspend
save device state
> load device state
startup
shutdown

kernel space

Use fork+exec to load the new QEMU binary

- can inherit any fd from the old, including memfd...

Use shared memory to sync and transfer
device state between the old and new

Divide the kvm module into multiple duplicated
modules to also upgrade kvm



Downtime Breakdown




Downtime Breakdown

64 vCPUs, 256G memory, 1 multiqueue vhost-user-net device, 2 multiqueue vhost-user-blk devices

vhost user blk start

vhost net start -I

new vm_start

vhost_user_blk_stop

old vm_stop

sync_cpu_state vmstate_save vmstate_load B others

Main time cost:

» stop/start vhost-uesr devices
» transfer device state



Optimizations




I Optimizations - Insight

Directly reuse the live migration framework to stop/start devices and
transfer device state

/\

Internal emulated devices external devices

still needed

but limited number and lightweight ~ Un"ecessary and can be optimized



I Optimizations - Transparent to Backends

Take vhost-user devices (DPDK/SPDK) for example

* Inherit the channels and shared fds between
the VMM and vhost-user backends

« Use them directly in the new QEMU and skip
the related init processes

main

channel

slave

kick

channel

fds
call

inflight
fds

fd

v \ 4 \4




I Optimizations - Transparent to Backends

Make vhost-user backends unaware of in live upgrade;

« don’t stop the backends in the old QEMU
» skip all ‘'set’ and some ‘get’ communications to the backends in the new

SET_FEATURES X

SET_SLAVE_REQ_FD

SET_MEM_TABLE X
SET_... ¢

GET_VRING_BASE X

GET_INFLIGHT_FD X

GET ... W




_ Optimizations - Transparent to Backends

Some issues:
» the backends keep running and may trigger IRQs even after the guest has paused,
then the new kvm may miss the IRQs received and pending in the old

 |f the backends crash or send SLAVE_* messages to the master, it is uncertain which
QEMU will receive the messages...

e cause stale mem-table data in the backends



l Optimizations - Presave Config

* Virtqueue-related state in the data plane is
kept in the guest and backends
- NO need to transfer

» (Config state is much less changed during
the VM lifetime
- presave It before VM pause

keep a track of the config change, and retransfer
the state after VM pause if any change occurs

guest kick/call

control planel

data path VMM

backend

_____________




l Optimizations - More Than Vhost-user

* Also apply to vfio, vhost...

4
« QEMU upgrade only mode =

joctl .
- inherit the kvm fds and skip the related init processes socket
- no need to sync the vCPU state from/to kvm \“’” .




Achievements




Achievements - Downtime

» Effect of optimizations on downtime
. without-optim . with-optim

downtime /ms downtime /ms
140 1200
119 121 122 1054
120
006 966 985

100

800
80

0 0 0
82% 75% 82% 600 93% 93% 94%

60

400
40

30

21 22 200

20
. . . =
0 workload 0 - - workload
idle stress fio idle stress fio
stress: stress -c 16 stress: stress -c 64
fio: fio -filename=/dev/vdb -rw=randwrite -direct=1 -bs=4k -iodepth=4 ... fio: fio -filename=/dev/vdb:/dev/vdc... -rw=randwrite -direct=1 -bs=4k -iodepth=4 ...
_1 - - 2_

-1- 16 vCPUs, 64G memory, 1 multiqueue vhost-user-net devices, 2 multiqueue vhost-user-blk devices
-2- 64 vCPUs, 256G memory, 2 multiqueue vhost-user-net devices, 10 multiqueue vhost-user-blk devices



icmp_seq=214
icmp_seq=215
icmp_seq=216
icmp_seq=217

tt1=64
tt1=64
tt1=64
tt1=64

time=0.055 ms
time=0.054 ms
time=0.062 ms
time=2402 ms

I Achievements - Packet Loss

» Effect of optimizations on packet loss

icmp_seq=218
icmp_seq=219
icmp_seq=220
icmp_seq=221

tt1=64
tt1=64
tt1=64
tt1=64

time=0.050 ms
time=0.044 ms
time=0.055 ms
time=98.1 ms

icmp_seq=218 ttl=64 time=2382 ms icmp_seq=222 ttl=64 time=78.1 ms
icmp_seq=219 ttl=64 time=2362 ms icmp_seq=223 ttl=64 time=58.1 ms
- icmp_seq=224 ttl1=64 time=38.1 ms
icmp_seq=294 ttl=64 time=862 ms icmp_seq=225 ttl=64 time=18.1 ms
icmp_seq=295 tt1=64 time=842 ms icmp_seq=226 ttl=64 time=0.055 ms
icmp_seq=296 ttl=64 time=822 ms icmp_seq=227 ttl=64 time=0.050 ms
icmp_seq=335 ttl=64 time=42.9 ms icmp_seq=228 ttl=64 time=0.049 ms
icmp_seq=336 ttl=64 time=22.9 ms

icmp_seq=337 ttl=64 time=2.96 ms —-— ping statistics ——-

icmp_seq=338
icmp_seq=339
icmp_seq=340

tt1=64
tt1=64
tt1=64

time=0.075 ms
time=0.053 ms
time=0.055 ms

488 packets transmitted, 488 received, 0% packet loss, time 4917ms

-—— ping statistics ---
631 packets transmitted, 593 received, 6% packet loss, time 7499ms

without-optim with-optim

64 vCPUs, 256G memory, 2 multiqueue vhost-user-net devices, 10 multiqueue vhost-user-blk devices

much lower latency and no packet loss



Thank You




Q&A

Contact Info: lushenming@bytedance.com




Jiil ByteDance




