eBPF-based Extensible
Paravirtualization

Luigi Leonardi, Giuseppe Lettieri, Giacomo Pellicci

eBPF-based extensible
Paravirtualization

o Paravirtualization
e eBPF

Hyperup Calls

-

Virtual to Physical
CPU Affinity

Q&A

Paravirtualization

Possible Approaches

e @&

Hypercalls VM .
Introspection
MOdIfy the guest The hypervisor Hyperup calls
kernel to give the analyzes the guest’s

hypervisor some hints memory

Useful debugging tool

(Q In Kernel Verifier
QD
Kernel is not modified

eBPF

Injection Verification
Code is injected inside the Kernel, ready to be Injected code is verified and if successful is
verified. loaded inside the Kernel

Generation Statistics
eBPF code is generated from C-like Stats or debugging infos can now
language and compiled into bytecode be collected.

Hyperup Calls

Registration

int is_page_free { | _ references
if (pagesfree) | ~ T T T T T = —m ===~
return false;

Performed by the Hypervisor with

else {
int page; BPF_MOV_64 r@, ri |
ow overhead
B Hyperupcall Code (C) |Sne-TnPzimm ot o
= BPF_ALU64_IMM r3, #
® ﬂ BPF_EXIT_INSN
7& eBPF Bytecode
Hyperupcall \
Framework
______________ 0 L Code is verified before execution
g 6 < Hyperupcall
g eBPF Verifier Registration
-
g 1 movl $0xff12AB45, %
> addl %ecx, %eax
=l xorl %esi, %esi . .
7 e 4(Reap) . Nebx Ineffective when guest memory is

encrypted

eBPF JIT Compiler Native Code

Design and Implementation of Hyperup Calls

Nadav Amit and Michael Wei, VMware Research

eBPF-based Extensible Paravirtualization

Host sends a message
to the guest

Guest Agent
consumes the
message

eBPF code
inside the message

HOST GUEST
USERSPACE SYSTEM | USERSPACE
“HosT i QEmu | DEVICE oAEmON
INTERFACE | DEVICE DRIVER DAEMON
— send m!sg !
MSG_TYPE—>» blocking read()

Store msg in
device buffer

raise interruR

MSG_TYPE

> ,
Interrupt handler E
wake up daemon process| !
T ret : d
re urn;rea ()‘__}

[Consume msg J

accordingly to
MSG_TYPE

eBPF-based Extensible Paravirtualization

A

read()
write()
ioctl()

Kernel

Y Can be loaded or unloaded at @
DRIVER any time
K 4 | /GUEST

/ QEMU Userspaca)
DEVICE No need to modify the guest’s Kernel
A

send()
recv()

HOST INTERFACE Guest is free to decide to load the
/ eBPF program or not.

Comparison w.r.t. Hyperupcalls

eBPF-based Extensible Paravirtualization Hyperupcalls
Host to Guest Guest to Host
eBPF eBPF

Async. Response Invoked by the HV

SIiiv

Virtual to Physical CPUs Affinity

Reasons

Q00

Speed Flexibility Security

Virtual to Physical CPUs Affinity

HOST GUEST HOST GUEST
. .
' Guest ' Guest
N | P ues S P P S ues
pCPU 0 | : T vCPU 0 [Thread pCPU 0 | : vCPU 0O [Thread
.- o 1
B oL 1
R 1
.7 . I:" " I
pCPU 1 W x vCPU 1 pCPU 1 1 vCPU 1
S0 1
S I
Sy '
K A 1
',’ '.' 1 1
- [| 1
pcPU2 S pCPU 2 X
S 1 1
. 1 1
S 1 1
S 1 1
K 1 1
pCPU 3 : pCPU 3 :
1 1
1 1
1 1
1 1
]]

Virtual to Physical CPUs Affinity

HOST GUEST
USERSPACE SYSTEM USERSPACE
" HosT ¢ @emu | pewice | ..
INTERFACE | DEVICE DRIVER DAEMON
T SendeBPF :
E program ——————
§ fork() ey
Child process Parent process
(" LoadeBPF |)
program Wait for next
: (kprobe on MESSage..
i |lsched_setaffinity)
Wrile affinity ; L—-’
mask in . Cl Wait for eBPF
device *'m"[}:" map madification
| Affinity mash‘remappir-g
: (if neadad)
Call sched_setaffinity()
. on host system

Kprobe on sched_settaffinity

Guest Agent checks for changes in
eBPF map

Information on bindings is sent to
the hypervisor

Throughput [Mpps]

vCPU Pinning w/o HT

Throughput variation using vCPU pinning

under different load conditions

25 A

¥
(=]
I

=
(9]
1

10 4

26.96

No load

26.94

BN vCPU pinning: OFF (default)
I vCPU pinning: ON

26.2

Low load: 8x yes

No Load
Low Load

Performance Evaluation

Serialization

Throughput [Mpps]

Throughput variation using vCPU pinning under heavy
load conditions with different serialization percentages

25

¥}
o
1

=
U
1

10 4

Serial:
Serial:
Serial:
Serial:
Serial:

0% vCPU pin: OFF
2% vCPU pin: OFF
10% vCPU pin: OFF
20% vCPU pin: OFF 26.91
0% vCPU pin: ON

2363

High load: 32x yes

Performance Evaluation Native
vCPU Pinning with HT Perfomance

Throughput variation using Hyper-thread pinning Throughput variation using Hyper-thread pinning Throughput comparison for SPSCQ between host system
under different load conditions under different load conditions and guest system with Hyper-thread pinning
120 . e
109.73 BN HT pinning: OFF (default) B HT pinning: OFF (default) under different load conditions
EEE HT pinning: ON BN HT pinning: ON 140 4 mmm Host performance (native)
mmm Guest performance (standard)
B Guest performance (HT pinning ON)
299 no12 109.74

100
= q =
& o g

= = £ 81
a = =
= = a
[=) =] =
3 =] o
e 2 El

= E -£°- 60
=

40 -

20

0 .

Load: 8x yes Load: 16x yes Load: 32x yes Load: 64x yes No load Load: 8x yes

No Load High Load
Low Load

Thank You!
Any Questlons"

