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Useful debugging tool
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eBPF

Injection Verification
Code is injected inside the Kernel, ready to be Injected code is verified and if successful is
verified. loaded inside the Kernel

Generation Statistics
eBPF code is generated from C-like Stats or debugging infos can now
language and compiled into bytecode be collected.




Hyperup Calls

Registration
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eBPF JIT Compiler Native Code

Design and Implementation of Hyperup Calls

Nadav Amit and Michael Wei, VMware Research
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Guest Agent
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Comparison w.r.t. Hyperupcalls

eBPF-based Extensible Paravirtualization Hyperupcalls
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Virtual to Physical CPUs Affinity
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Virtual to Physical CPUs Affinity
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Virtual to Physical CPUs Affinity
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Throughput [Mpps]

vCPU Pinning w/o HT

Throughput variation using vCPU pinning

under different load conditions
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Performance Evaluation

Serialization

Throughput [Mpps]

Throughput variation using vCPU pinning under heavy
load conditions with different serialization percentages
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0% vCPU pin: OFF
2% vCPU pin: OFF
10% vCPU pin: OFF
20% vCPU pin: OFF 26.91
0% vCPU pin: ON

2363

High load: 32x yes



Performance Evaluation Native
vCPU Pinning with HT Perfomance

Throughput variation using Hyper-thread pinning Throughput variation using Hyper-thread pinning Throughput comparison for SPSCQ between host system
under different load conditions under different load conditions and guest system with Hyper-thread pinning
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Any Questlons"




