
Virtio Devices Emulation in
SPDK Based On VFIO-USER
Protocol
Changpeng Liu & Xiaodong Liu

KVM FORUM 2022

➢Introduction

➢Virtio BLK|SCSI Emulation

➢Performance

➢Summary

3

▪ VFIO-USER is a protocol that allows a device to be emulated in a
separate process outside of a Virtual Machine Monitor (VMM).

▪ The VFIO-USER specification is largely based on the Linux VFIO ioctl
interface to implement them as messages to be sent over a UNIX
domain socket.

▪ There are two parts of VFIO-USER:

• VFIO-USER client runs in VMM or application.

• VFIO-USER server for devices emulation in separate process.

▪ VFIO-USER client is used to provide
PCI device abstraction access APIs

▪ Virtio and NVMe client library
provide transport independent
abstractions

▪ Virtio VFIO-USER transport is added
to Virtio client library to use VFIO-
USER protocol as communication
channel to server process

▪ SPDK provides common block
device abstraction based on
different devices, such as NVMe,
Virtio BLK and Virtio SCSI as a library

Code review in progress

VFIO-USER Client

NVMe Library

NVMe VFIO-USER Transport

VFIO-USER PCI Device Abstraction

BDEV-NVMe

Virtio VFIO-USER Transport

Virtio-BLK Virtio-SCSI

BDEV-
Virtioblk

BDEV-
Virtioscsi

Block Device Abstraction

▪ VFIO-USER Server is used to provide
PCI devices emulation based on
libvfio-user

▪ Emulated Virtio device library
follows virtio protocol to response
PCI BAR accesses from client and
processes vrings

▪ Virtio BLK|SCSI processes detailed
BLK|SCSI commands, SCSI
commands are covered by the SCSI
library in SPDK

▪ Block device layer provides
abstraction of different block device
types

VFIO-USER Server

NVMeoF VFIO-USER Virtio VFIO-USER

Virtio-SCSI

libvfio-user

Third Party

SCSI

Emulated Virtio Device
Emulated NVMe

Device Virtio-BLK

Namespaces

Block Device Abstraction

Code review in progress

Ceph
RBD

Linux
AIO

NVMe iSCSI
Vendor specific
bdev modules

▪ Client side:

• SPDK virtio client library can support vhost-user, vfio-user and PCI as the
transport channel to communicate with vhost-user, vfio-user server process,
they are same in client side.

▪ Server side:

SPDK VHOST-USER SPDK VFIO-USER

Thread Model One thread for one controller with
multiple vrings

same

Virtio Feature Bits
Support

Both packed and split vring are supported
for virtio-blk and only split vring is
supported for virtio-scsi

Both packed and split vring
are supported for virtio-
blk|scsi

Live Migration Yes Not implemented now

Multiple Sessions Yes Not implemented now

Interrupt Mode Yes Not implemented now

▪ Unified client driver to enable different PCI device types.

• VFIO-USER client driver support in QEMU.

• VFIO-USER client driver support in Cloud Hypervisor.

• SPDK VFIO-USER client support for NVMe and Virtio devices.

• Live migration support to cover different PCI device types.

▪ VHOST-USER is designed for virtio devices

▪ Much thinner than VHOST-USER in VMM

• PCI emulation is in remote process for VFIO-USER

9

▪ VFIO Region 1: MSI-X Table, 0x0000 - 0x1000

▪ VFIO Region 2: MSI-X Pending Bit Array, 0x0000 - 0x1000

▪ VFIO Region 4:

• Common configuration 0x0000 - 0x1000

• ISR access 0x1000 - 0x2000

• Device specific configuration 0x2000 - 0x3000

• Notifications 0x3000 - 0x4000

• It’s up to user's configuration to set area `Notifications` as memory
mappable or not(Interrupt or Polling mode in target).

▪ Common configuration access responses based on virtio specification via (offset,
length, R|W flag)

access_bar4-->

-->common_cfg-->

-->features negotiation

--> queues setup

--> start|stop device

▪ Currently virtio-blk|scsi devices are supported and users can add other virtio device
type support based on emulated virtio device library.

▪ Device specific configuration access will be redirect to device layer

--virtio-blk contains `capacity`, `blk_size` etc.

--virtio-scsi contains `num_queues` etc.

Virtio-SCSI Thread Model
▪ Listen to the UNIX domain socket on

specified thread and start the accept poller

▪ QEMU connects to UNIX domain socket

▪ Accept poller starts a connection poller
which will deliver socket messages to
emulated virtio device library

▪ VFIO Region access callbacks are called

▪ Starts vring poller when VM asks to start
device

thread

Virtio-scsi
endpoint

scsi dev

scsi lun

bdev

/spdk/vfu.0

vring poller

VQ3VQ2VQ0

VM

accept poller

message
poller

Bdev Resize

Bdev Hotplug

VQ1

▪ Virtio-BLK

• READ/WRITE/WRITE ZEROES/DISCARD/FLUSH commands are supported, after
parsing these commands from vrings, they will be mapped to block layer APIs such
as spdk_bdev_readv/writev/write_zeroes/unmap/flush directly.

▪ Virtio-SCSI

• SPDK SCSI library with device abstraction and mandatory SPC|SBC commands
support, and we’ve used this library in iSCSI target.

• We can use SPDK SCSI library to process SCSI commands.

14

QEMU

VM

virtio-blk driver

/dev/vda /dev/vdb

FIO Test Tool

VFIO-USERVHOST-USER-BLK

SPDK_TGT

Virtio VHOST-USER Virtio VFIO-USER

Block Device Abstraction

NVMe

Nvme0n1p1 Nvme0n1p0

Virtio_BLK_vhost.0 Virtio_BLK_vfu.0

/var/run/vhost.0 /var/run/vfu.0

Core 1Core 2

▪ QEMU command line
• “taskset -c 4-8 /qemu-devel/qemu-system-x86_64 -cpu host -smp 4 -enable-kvm -m 8G -object

memory-backend-file,id=mem0,size=8G,mem-path=/dev/hugepages,share=on,prealloc=yes, -numa
node,memdev=mem0 -drive file=/root/fedora_33.img,if=none,id=disk -device ide-
hd,drive=disk,bootindex=0 -device vfio-user-pci,socket=/var/run/vfu.0 -chardev
socket,id=char0,path=/var/run/vhost.0 -device vhost-user-blk-pci,id=blk0,chardev=char0,num-
queues=4,packed=on”

▪ FIO parameters in VM
• “filename=[/dev/vda,/dev/vdb],bs=4k,numjobs=4,iodepth=[1,4,8,16],rw=randread,

ramp_time=60,runtime=1200”

▪ SPDK Configuration
• P5800X Optane 1.5 TB split into two logical parts

• Unix Domain socket vfu.0 running in core 1

• Unit Domain socket vhost.0 running in core 2

• 4 IO queues with qsize=128

▪ Test case 1:

From iodepth=1 to 16, the performance
number is almost same for the two controllers.

VM Test Workloads using
logical volumes of one physical

NVMe SSD

VFIO-USER BLK VHOST-USER
BLK

Random Read Iodepth 16, 4
Jobs

705K 689K

Random Read Iodepth 8, 4
Jobs

712K 699K

Random Read Iodepth 4, 4
Jobs

632K 602K

Random Read Iodepth 1, 4
Jobs

233K 239K

VM Test Workloads using NULL
loopback device as backend

VFIO-USER BLK VHOST-USER BLK

Random Write Iodepth 128, 4 Jobs 779K 773K

Random Write Iodepth 64, 4 Jobs 775K 768K

HOST System Configuration: 2 * Intel(R) Xeon(R) Platinum 8180M CPU @ 2.50GHz; 128GB, 2666 DDR4, 6 memory Channels; Bios: HT disabled, Turbo disabled; OS: Fedora 30, kernel 5.6.13-100. VM configuration : 4 vcpus 8GB memory, 4 IO queues;
VM OS: Fedora 33, kernel 5.10.8-200; Software: QEMU with vfio-user-pci patch, SPDK with VFIO-USER patches; VM: FIO 3.21, io depth=[128,64,16,8,4,1] numjobs=4, direct=1, block size=4k,randread,randwrite,ramp_time=60,runtime=1200; NVMe SSD: Intel
(R) Optane (TM) SSD P5800X Series, 1.5TB

▪ Test case 2:

Compared with Test case 1, we replace
NVMe SSD with NULL loopback device in this
case and test random write workload with
iodepth=64,128.

The purpose for this test case is just
compare the virtualization overhead for the
two controllers, and the test result shows that
the performance number is still almost same.

▪ Using same configuration as Test case 2 in server side

• build/bin/spdk_tgt –m 0x6

• scripts/rpc.py bdev_null_create Null0 102400 512

• scripts/rpc.py bdev_null_create Null1 102400 512

• scripts/rpc.py vfu_construct_endpoint vfu.0 --cpumask 0x2 --model-name virtio_blk

• scripts/rpc.py vfu_virtio_blk_add_bdev vfu.0 --bdev-name Null0 --num-queues=4 --qsize=128 --
packed-ring

• scripts/rpc.py vhost_create_blk_controller vhost.0 Null1 --cpumask 0x4

▪ Using the following commands to start SPDK client test
tool

• test/bdev/bdevperf/bdevperf -r /var/tmp/spdk.sock.1 -g -s 2048 -q 128 -o 4096 -w randread -t 1200 -m 0x8

• scripts/rpc.py -s /var/tmp/spdk.sock.1 bdev_virtio_attach_controller --dev-type blk --trtype vfio-user --traddr
vfu.0 VirtioBlk0

• test/bdev/bdevperf/bdevperf.py -s /var/tmp/spdk.sock.1 perform_tests

• Repeat step2 to replace “vfio-user” with “user” and “vfu.0” with “vhost.0” for vhost-user blk tests

SPDK Client Test using NULL
loopback device as backend

VFIO-USER BLK VHOST-USER BLK

Randread Iodepth 128, 1 thread 5407K 5851K

▪ Test case 3:

Polling mode driver is running
both on client and server side

HOST System Configuration: 2 * Intel(R) Xeon(R) Platinum 8180M CPU @ 2.50GHz; 128GB, 2666 DDR4, 6 memory Channels; Bios: HT disabled, Turbo disabled; OS: Fedora 30, kernel 5.6.13-100. SPDK with VFIO-USER patches.

18

▪ For VHOST-USER, QEMU emulates PCI device part and leave the vring processing in SPDK
vhost library, but for vring dequeue|enqueue processing, they are almost same in VHOST-
USER and VFIO-USER, we will abstract this part as a common library in future.

▪ Interrupt mode support.

• Accept poller and socket message poller can switch to interrupt mode after starting device

• Vring poller interrupt support with non mapped `Notification` section.

▪ Live migration support.

▪ Patches under review

• https://review.spdk.io/gerrit/c/spdk/spdk/+/12315, Virtio BLK emulation in server side

• https://review.spdk.io/gerrit/c/spdk/spdk/+/12673, Virtio SCSI emulation in server side

• https://review.spdk.io/gerrit/c/spdk/spdk/+/13896, Virtio BLK client block device support

• https://review.spdk.io/gerrit/c/spdk/spdk/+/13897, Virtio SCSI client block device support

• https://github.com/oracle/qemu.git, branch `vfio-user-irqmask2`, QEMU VFIO-USER Client support

▪ Done

• https://github.com/cloud-hypervisor/cloud-hypervisor, Cloud-Hypervisor VFIO-USER Client support

• https://github.com/spdk/spdk/vfio-user, SPDK VFIO-USER Client support

21

