
Unifying Confidential Attestation

Tobin Feldman-Fitzthum, Dov Murik IBM

Set the stage

- VM-based Confidential computing
- Untrusted host/hypervisor
- VMs with encrypted memory
- Terms:
 - Guest/Attester
 - Host
 - Owner/Relying Party

What we will cover

- Overview of attestation mechanisms
- Approaches for unification
- Focus on guest

SEV(-ES)

- Pre-attestation driven by the host
- Secure channel established before boot
- Launch measurement covers:
 - Platform information
 - Launch digest (hash of VM firmware and initial vCPUs state)
- Secret injected using secure channel after measurement verification

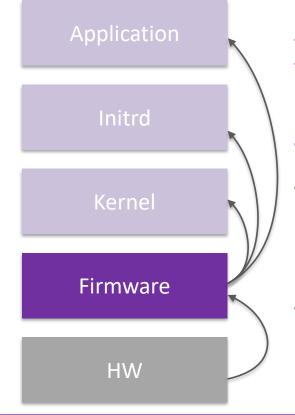
- Driven by the guest
- Signed attestation report covers:
 - Platform information
 - Launch digest (hash of VM firmware and initial vCPUs state)
- VM separated to permission levels (VMPLs)

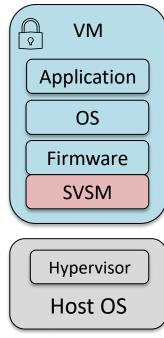
TDX

- Driven by the guest
- Signed attestation report covers:
 - Platform information
 - VM firmware, initial vCPUs state
 - Can be extended using 4 RTMRs (run-time measurement registers)
- Two phases: get report; then sign it

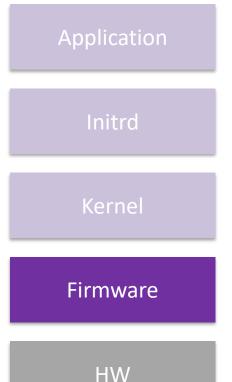
s390 Secure Execution

- Driven by the guest
 - Requires encrypted attestation request from owner (guest passes it to ultravisor)
- Signed attestation report covers:
 - Platform information
 - kernel + initrd + kernel command-line
- Optional guest image is encrypted


Unification


- Measure the entire stack with every TEE
- Let the HW measure part of the stack
- Use software to measure the rest
- Where should we split between HW and SW?

Firmware (1)

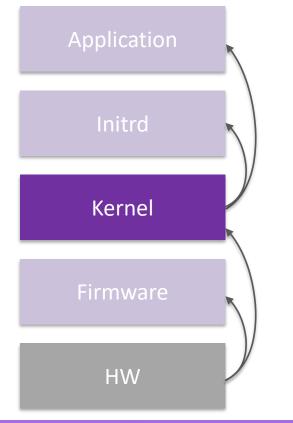


- HW measures the firmware
- Firmware measures the rest of the stack by securely emulating a TPM
 - Secure vTPM can't be tampered with by host or guest OS
- Secure vTPM generically exposes attestation to the guest OS and facilitates measurements
- vTPM provides a generic interface across all hardware and requires little to no modification of guests
 - Existing interface with kernel and measurement infrastructure
 - Shared between platforms and deployment types
- Can be implemented as an SVSM with SEV-SNP
 - Memory encryption prevents tampering by host
 - VMPLs prevent tampering by guest OS

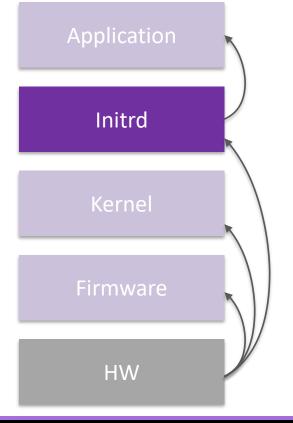
Firmware (2)

- How do you provision it?
 - Inject identity into vTPM
 - How do we securely manage these TPM identities?
 - TPM is unusable until identity has been provisioned.
- Alternatively, use ephemeral vTPMs, which are manufactured for each guest
 - Include the hash of the public EK in the attestation evidence
 - Verifier of TPM quotes will have to validate evidence

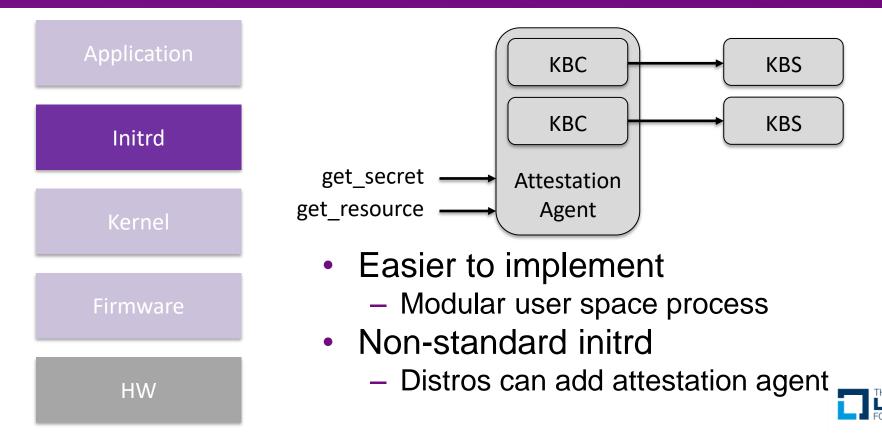
Firmware (3)

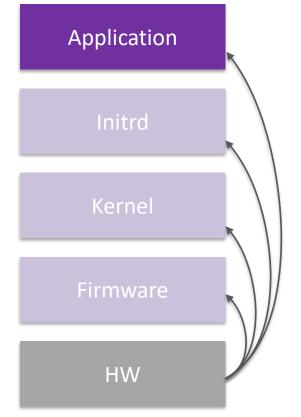


- SVSM/VMPLs only supported with SEV-SNP
- # TDX RTMRs < # TPM PCRs
- If no VMPLs: how can we protect from a malicious kernel?
 - Maybe in another trusted VM
- vTPM is just one option for firmware-based measurement


Kernel

- HW measures firmware and kernel
- Kernel measures the rest
 - Uses software kernel-mode TPM
- There are unification efforts in the kernel for other aspects of confidential computing


Initrd


- HW measures firmware, kernel, and initrd
 - Using measured direct boot (for SEV / SEV-SNP)
 - OVMF extends RTMRs during measured boot (for TDX)
- Attestation Agent in initrd measures the rest
 - Used in Confidential Containers to provide workload secrets/certificates
 - Could also be used for encrypted disks

Initrd

Application

- HW measures the entire stack
- Today, most TEEs don't measure the whole stack
- HW is less flexible and standardized
- Extending HW measurement to the whole stack can have performance implications
- This is non-unified attestation

Attestation verification

- Verification follows from guest implementation
- Requires validation of hardware measurement
- Might also require validating a software measurement
- HW/SW validation could be split between multiple services

Further research

- Which approach should we take?
 - Are they interoperable?
- Supporting new architectures (ARM-CCA, RISC-V, ...)
- Can we standardize future versions of hardware

