Alternative to Nesting

Mengmei Ye (), Angelo Ruocco (

Daniele Buono (), James Bottomley (
Hubertus Franke (frankeh@us.ibm.com)

mailto:mye@ibm.com
mailto:ang@zurich.ibm.com
mailto:dbuono@us.ibm.com
mailto:jejb@linux.ibm.com

Industry problem

« There's an increasing need from kubernetes customers
to spawn VMs:
— Kubevirt: VM-based workloads scheduled through Kubernetes
— kata-containers et al: increase container boundaries through
VMs
« This creates a significant problem in common cloud-
based kubernetes deployments, where worker nodes are
themselves deployed in VM

THE

L LINUX

FOUNDATION

Present options and drawbacks

1. VMs on Baremetal systems
— Expensive
— Very low customizability

2. Nested VMs

— Confidentiality (TDX/SEV/PVM encryption unavailable)

— Security (large codebase for nested = higher chance of
bugs)

— Low performance

— Not allowed by most Cloud Providers

THE

L LINUX

FOUNDATION

Solution — Flatten the hierarchy

* A (Primary) VM is able to ask the host to
spawn a (Secondary) VM

* The Primary VM is able to access the
Secondary VM

* The Primary VM has some basic control
over the Secondary VM

Solution — Flatten the hierarchy

Nested VM

Virtualization software

Primary VM Secondary VM

Standard VM

Virtualization software Virtualization software

THE

L LINUX

FOUNDATION

Flatten the hierarchy — Challenges

« Security

— The rest of the system should not be affected by secondary
VMs. Resources must be carved out from the Primary VM

— Primary VM only has access to some pre-defined actions. The
control plane is kept in LO

* |solation

— Communication channel Host <-> Primary <-> Secondary has
to be only accessible by the Primary VM

— Secondary VMs must be invisible to VMs in other
namespaces

THE

L LINUX

FOUNDATION

Solution — Flatten the hierarchy

Virtualization
Software

L LINUX

FOUNDATION

Solution — Flatten the hierarchy

Std VM + Nested

Primary + Secondary VMs

Baremetal + Std VMs

Cheap Cheap (?) Expensive
High flexibility Medium flexibility Low flexibility
No encryption Encryption Encryption

No true device passthrough

True device passthrough

True device passthrough

Slow(ish)

Fast

Fast

L

THE

LINUX

FOUNDATION

The Secondary VM Daemon

» Talks to the Primary VM via VSOCK

« Controls the Secondary VMs
— Create

— Modify

— Destroy

— Show/List

Enforcing the limits — Cgroup

* Primary VM, Secondary VMs and Daemon
live inside a cgroup with memory and cpu
limits

Enforcing the limits — Storage

* Primary VMs have an additional disk

where they put the images for Secondary
VMs

* The disk gets unplugged from the
primaryVM, mounted on host, the images
Is copied, and disk shrunk to new size
before re-plug

Enforcing the limits — Network

 Avirtual network is created for each
Primary - Secondary VMs partition.

 All the requests go to the same physical
interface accessible by the Primary VM

Proof of Concept — Why Libvirt

Open Source
* Supports multiple hypervisors

» Uses cgroups via systemd integration, easy to
add implementation for limits enforcement

- Easy way to create and add virtual networks

» Easy, standard way to attach-detach devices
at runtime

Secondary VM — Libvirt

Define standard APls Host <-> Primary VMs
* Clean up — upstream code
* Improve cgroup <-> libvirt synergy

* Improve PrimaryVM isolation in host
— Improve cgroup cpuset
— Enforce guarantees over shared resources

» Evaluate alternative storage solutions

THE
L I LINUX
FOUNDATION

