
Mengmei Ye (mye@ibm.com), Angelo Ruocco (ang@zurich.ibm.com), 
Daniele Buono (dbuono@us.ibm.com), James Bottomley (jejb@linux.ibm.com), 
Hubertus Franke (frankeh@us.ibm.com)

No More Turtles
Alternative to Nesting

mailto:mye@ibm.com
mailto:ang@zurich.ibm.com
mailto:dbuono@us.ibm.com
mailto:jejb@linux.ibm.com


Industry problem

• There's an increasing need from kubernetes customers 
to spawn VMs:
– Kubevirt: VM-based workloads scheduled through Kubernetes
– kata-containers et al: increase container boundaries through 

VMs

• This creates a significant problem in common cloud-
based kubernetes deployments, where worker nodes are 
themselves deployed in VM



Present options and drawbacks

1. VMs on Baremetal systems
– Expensive
– Very low customizability

2. Nested VMs
– Confidentiality (TDX/SEV/PVM encryption unavailable)
– Security (large codebase for nested = higher chance of 

bugs)
– Low performance
– Not allowed by most Cloud Providers



Solution – Flatten the hierarchy

• A (Primary) VM is able to ask the host to 
spawn a (Secondary) VM

• The Primary VM is able to access the 
Secondary VM

• The Primary VM has some basic control 
over the Secondary VM



Solution – Flatten the hierarchy

Standard VM

Nested VM

Virtualization software

Secondary VM

Virtualization software

Primary VM

Virtualization software



Flatten the hierarchy – Challenges

• Security
– The rest of the system should not be affected by secondary 

VMs. Resources must be carved out from the Primary VM
– Primary VM only has access to some pre-defined actions. The 

control plane is kept in L0

• Isolation
– Communication channel Host <-> Primary <-> Secondary has 

to be only accessible by the Primary VM

– Secondary VMs must be invisible to VMs in other 
namespaces



Solution – Flatten the hierarchy

PrimaryVM

Virtualization
Software

SecVM 
Daemon

SecVM 
Daemon

PrimaryVM

SecVM 
Image
Disk

SecVM 
Image
Disk

L0 L1
SecVM

Template
SecVM 
Image
Disk

SecVM
Image

SecondaryVM



Solution – Flatten the hierarchy

Std VM + Nested Primary + Secondary VMs Baremetal + Std VMs

Cheap Cheap (?) Expensive

High flexibility Medium flexibility Low flexibility

No encryption Encryption Encryption

No true device passthrough True device passthrough True device passthrough

Slow(ish) Fast Fast



The Secondary VM Daemon

• Talks to the Primary VM via VSOCK
• Controls the Secondary VMs

– Create
– Modify
– Destroy
– Show/List



Enforcing the limits – Cgroup

• Primary VM, Secondary VMs and Daemon 
live inside a cgroup with memory and cpu 
limits



Enforcing the limits – Storage

• Primary VMs have an additional disk 
where they put the images for Secondary 
VMs

• The disk gets unplugged from the 
primaryVM, mounted on host, the images 
is copied, and disk shrunk to new size 
before re-plug



Enforcing the limits – Network

• A virtual network is created for each 
Primary - Secondary VMs partition.

• All the requests go to the same physical 
interface accessible by the Primary VM



Proof of Concept – Why Libvirt

• Open Source
• Supports multiple hypervisors
• Uses cgroups via systemd integration, easy to 

add implementation for limits enforcement
• Easy way to create and add virtual networks
• Easy, standard way to attach-detach devices 

at runtime



Secondary VM – Libvirt

DEMO



Future work

• Define standard APIs Host <-> Primary VMs
• Clean up – upstream code
• Improve cgroup <-> libvirt synergy
• Improve PrimaryVM isolation in host

– Improve cgroup cpuset
– Enforce guarantees over shared resources

• Evaluate alternative storage solutions




