E®WE= SUSE

SUSE Labs Conference 2021

QEMU & KVM Automated
Performance Benchmarking @ SUSE

Dario Faggioli, SUSE, Italy




Self Introductions

Who | am, what | do..

dfaggioli@suse.com

@DarioFagqgioli

@dfaggiolimatrix.org
em dariof (IRC)

Dario Faggioli
Virtualization Software Engineer

Ph.D in real-time systems, then
Citrix (2011), now SUSE (2018)

Worked on Linux scheduling
(sCHED DEADLINE), Xen hypervisor
(not only) scheduling (Credit2),
QEMU & KVM upstream and
downstream

Tend to focus on
“anything performance”

In openSUSE, since 2018 too

User:
- Tumbleweed
- MicroOS Desktop

Contributor:

- Virtualization packages
- Some tracing packages
- MicroOS Deskop


mailto:dfaggioli@suse.com
https://twitter.com/DarioFaggioli

Agenda

—  Why benchmarking Virtualization

Tools for benchmarking
Virtualization

What to do for benchmarking
Virtualization




lcons by Smashicons and Payungkead @ www.flaticon.com

Performance Testing

A (real) story: releasing a new version of the OS

Let's avoid performance regressions, between SLE[1] 15-SP3 and

—  Run benchmarks CPU bench, I/O bench and MEM bench on 15-SP3
—  Run benchmarks CPU bench, I/O bench and MEM bench on

15-SP4:

- glibc 2.31

- systemd 249
- Kernel 5.14.21
- QEMU 6.2.0
- Libvirt 7.1.0

— Compare!

cwe
[1] SUSE Linux Enterprise



https://www.flaticon.com/authors/smashicons
https://www.flaticon.com/authors/payungkead
http://www.flaticon.com

Performance Testing

A (real) story: releasing a new version of the OS

Let’'s avoid performance regressions, between SLE 15-SP3 and

= ALERT: CPU bench is 12% slower on SP4 !l

- It can be systemd
- It can be the kernel

= Note that:
- ltcant be glibc
- ltcan't be QEMU
- ltcan't be Libvirt

=
=

U

different version
different version

15-SP4:

- glibc 2.31

- systemd 249
- Kernel 5.14.21
- QEMU 6.2.0
- Libvirt 7.1.0

same version [1]

different version, but not involved

same version and not involved

[1] Well, it still can be, due to different patches, etc. Just bear with me, it's an example



Performance Testing: Enters Virtualization

A (real) story: releasing a new version of the OS

Let’s avoid performance regressions, between SLE 15-SP3 and

—  Run benchmarks CPU bench, I/O benchand MEM bench in a 15-SP3 VM, on a 15-SP3 host
—  Run benchmarks CPU bench, I/O bench and MEM bench in a 15-SP4 VM, on @

15-SP4:

- glibc 2.31

- systemd 249
- kernel 5.14.21
- QEMU 6.2.0
- Libvirt 7.1.0




Performance Testing: Enters Virtualization

The plot thickens..

Let’s avoid performance regressions, between SLE 15-SP3 and SLE 15-5P4:

— ALERT: CPU bench is 12% slower on SP4 !
— It can be host systemd
— It can be guest systemd
— It can be host kernel
— It can be guest kernel
— It can be (host!) QEMU

15-SP4:

- glibc 2.31

- systemd 249
- kernel 5.14.21
- QEMU 6.2.0
- Libvirt 7.1.0




Performance Testing: Enters Virtualization... Take

The plot thickens..

More combinations:

—  Run benchmarks CPU bench, I/O bench and MEM bench in a 15-SP3 VM, on a 15-SP3 host
—  Run benchmarks CPU bench, I/O bench and MEM bench in a 15-SP3 VM, on o
—  Run benchmarks CPU bench, I/O bench and MEM bench in a 15-SP4 VM, on @
—  Run benchmarks CPU bench, I/O bench and MEM bench in a 15-SP4 VM, on a 15-SP3 host

15-SP4: 15-SP4:

- glibc 2.31 - glibc 2.31

- systemd 249 - systemd 249
- kernel 5.14.21 - kernel 5.14.21
- QEMU 6.2.0 - QEMU 6.2.0
- Libvirt 7.1.0 - Libvirt 7.1.0




Performance Testing: Enters Virtualization... Take i

The plot thickens..

Different VM “sizes”:

= Run benchmarks in a1vCPU 4GB RAM 15-SP3 VM, on a 15-SP3 host

= Run benchmarks in a 16 vCPUs 64GB RAM 15-SP3 VM, on a 15-SP3 host
= Run benchmarks in a 128 vCPUs 2TB RAM 15-SP3 VM, on a 15-SP3 host
= Run benchmarks in a1vCPU 4GB RAM 15-SP3 VM, on a

= Run benchmarks in a 16 vCPUs 64GB RAM 15-SP3 VM, on d

= Run benchmarks in a 128 vCPUs 2TB RAM 15-SP3 VM, on d

= Run benchmarks in a1vCPU 4GB RAM 15=-SP4 VM, on a

= Run benchmarks in a 16 vCPUs 64GB RAM 15-SP4 VM, on d

= Run benchmarks in a 128 vCPUs 2TB RAM 15-SP4 VM, on d



Performance Testing: Enters Virtualization... Take IV

The plot thickens..

Different VM & host configuration (e.g, VM's virtual topology, host-level tuning):

— Run benchmarks in a 4 vCPU 8GB RAM 15-SP3 VM, default config, on a 15-SP3 host

— Run lbenchmarks in a 4 vCPUs 8GB RAM 15-SP3 VM, with virtual topology, pinned
VCPUSs, I0-Threads and Emulator threads, on a 15=SP3 host

— Run benchmarks in a 4 vCPU 8GB RAM 15-SP3 VM, default config, on a

— Run lbenchmarks in a 4 vCPUs 8GB RAM 15-SP3 VM, with virtual topology, pinned
VCPUSs, IO0-Threads and Emulator thread, on a

Non pinned
______________ -

—————————————— Io Threads
4vCPUs VM (—===° N — Y 110 Thread ( ) I

:|I°o A§°1 |°2§ §°3§JI pinned to g : -
V iv V2EI 13 V3El ket 0 : E Fl |3 F o .
Default | || B J Frmmne] § [Sererme”] § |Srerrem socke N ; ] 3 :
vTopology \ — /' [0\

="\

)

=/




Performance Testing: Enters Virtualization... Take V

The plot thickens..

Multiple VMs:

—  Run benchmarks CPU bench, I/O bench and MEM bench in a 15-SP3 VM, on a 15-SP3 host
—  Run benchmarks CPU bench, I/O bench and MEM bench in 2 15-SP3 VMs, on a 15-SP3 host
—  Run benchmarks CPU bench, I/O bench and MEM bench in 4 15-SP3 VMs, on a 15-SP3 host
—  Run benchmarks CPU bench, I/O bench and MEM bench in a 15-SP4 VM, on @

—  Run benchmarks CPU bench, I/O bench and MEM bench in 2 15-SP4 VMs, on d

—  Run benchmarks CPU bench, I/O bench and MEM bench in 4 15-SP4 VMs, on d

15-SP4 host

15-SP4 host 15-SP4 host




Performance Testing: Enters Virtualization... Take VI

The plot thickens..

Heterogeneous workloads, inside the various VMs:

- Run:

benchmark CPU bench in a 15=-SP3 VM, on a 15-SP3 host
benchmark I/O bench in a 15-SP3 VM, on the same 15-SP3 host

benchmark CPU bench in a 15=-SP3 VM, on d
benchmark I/O bench in a 15-SP3 VM, on the same

benchmark CPU bench in a 15=-SP4 VM, on A
benchmark I/O bench in a 15-SP4 VM, on the same

15-SP4 host

15-SP4 host




Performance Testing: Enters Virtualization... Take WTH !!!

<<Infinite Diversity in Infinite Combinations>> (cit.)

Putting everything together:

— For each host OS:
- Guest OS == host OS ...
- .. but also different!
- Inone VM..
- . butalsoin>1VMs!
= When all of them have the same size ..
— .. but also when they have different sizes!
— In one (e.g, the default one) host & VMs configuration
— .. but also in different host & VMs configurations!
= Running the same workloads in all the VMs ...
— .. but also running different workloads in each one!



https://memory-alpha.fandom.com/wiki/IDIC

Examples |

VM Size

Default number of memory pre-allocation threads in QEMU went from #vCPUS to 1

(Large) VM startup time was not happy!
Learned the hard way with customer bug 1197084

| 1024G
TTeT—

_________________________ I
SLES15SP3 == QEMU 6.2.0 |

_________________________ l
real Om4.508s |


https://bugzilla.suse.com/show_bug.cgi?id=1197084

Examples i

VM Configuration

— Virtual topology + vCPU pinning
resulted in different in-guest kernel
behavior when waking up tasks

— See: Virtual Topology for Virtual
Machines: Friend or Foe?

= Presence or absence of an L3 in the
virtual topology resulted in glibc to
behave differently, inside the guest, in
turn resulting in performance
anomalies:
— See: Virtual Topology for Virtual
Machines: Friend or Foe?

Waking Up Tasks

In the Linux kernel, try_to_wake_up() is called when a task that was

blocked or sleeping, wants to run again

1. The wake-up of the task (E.g, t1) happens on a CPU,

the wakeup CPU (e.g., po)

2. The task needs to be put in a runqueue,
the target runqueue (E.g., p1_rq or p2_rq)
3. The target CPU is informed about the new task
a. If the target CPU is idle, the task runs

b. If the target CPU is busy, it checks for preemption

SUSE

Throughput, GB/sec
8

50
40 -
20
10 i
0

Copy

W Host ®VM

Scale

Operation

STREAM - Host vs. VM

Add

Triad

15



https://www.youtube.com/watch?v=8yA2SNnx2Ko
https://www.youtube.com/watch?v=8yA2SNnx2Ko
https://www.youtube.com/watch?v=8yA2SNnx2Ko
https://www.youtube.com/watch?v=8yA2SNnx2Ko

Examples il

Multiple VMs

— Fairness issues with the Linux Core-Scheduling patch, identified by benchmarking with

multiple VMs

See: Core Scheduling, Some USe Cases, OSPM 2020

stddev

Virtualization Fairness: memcached

Memcached/Mutilate CPU, Xeon 56 CPUs, 4 VMs 14 vcpus each
W baseline nosmt
M with_coresched M with_coresched_vcores

20000.000
18000.000
16000.000
14000.000

10000.000

8000.000

6000.000

4000.000

e mm wmll W [ |
7 12

Threads

14

Copyright © SUSE 2020

std-dev is really big, in
general.

coresched and
coresched_vcores have
gigantic std-dey, i.e,,
terrible fairness.

It seems we are trading

fairness for performance,
in that case?

SUSE



http://retis.sssup.it/ospm-summit/

ojg o0

I L
BB b

20 00" (1]

—
b
(X3
s

]

i

[}

um

o0
it
BE

° 3

- )
8 | § I ]L

OQOGQOQ%QQi

Virtualization
Performance
Test Suites,
Anyone?

TR

90 F 00 F 00 g oorz—e




MMTests

The tool for the job

"MMTests is a configurable test suite that
runs a number of common workloads of
interest to MM developers.” (Sept. 2012, LKIVIL)

= Now itis a lot more !
= Including Virtualization !l

—  Fetches, builds, configures & runs a (set
of) benchmark(s)

—  https://github.com/gormanm/mmtests

—  GH PRs, email to Mel Gorman or myself

—  Bash & Perl

There has been previous talks.

Me, FOSDEM 2020, Automated Performance
Testing for Virtualization with MMTests

Me, OSPM 2020, Scheduler benchmarking with
MMTests

Me, SUSE Labs Conference 2021, (Not Just) VM
BEnchmarking with MMTests: Some Updates

Mel Gorman, SUSE Lalbs Conference 2018, Marvin:
Automated assistant for development and Ci
Jan Karag, Open Source Summit 2017, Detecting
Performance Reagressions in the Linux Kernel

Jan Kara, SUSE Labs Conference 2017, The
Performance Team's Grid

Davidlohr Bueso, LinuxCon NA 2015, Performance
Monitoring in the Linux Kernel

18


https://groups.google.com/forum/#!topic/linux.kernel/_EPle_ptNFk
https://github.com/gormanm/mmtests
https://archive.fosdem.org/2020/schedule/event/testing_automated_performance_testing_virtualization/
https://archive.fosdem.org/2020/schedule/event/testing_automated_performance_testing_virtualization/
https://lwn.net/Articles/820823/
https://lwn.net/Articles/820823/
https://www.youtube.com/watch?v=H_qvdemBKA0
https://www.youtube.com/watch?v=H_qvdemBKA0
https://archive.fosdem.org/2020/schedule/event/testing_automated_performance_testing_virtualization/
https://archive.fosdem.org/2020/schedule/event/testing_automated_performance_testing_virtualization/
https://osseu17.sched.com/event/BxIY
https://osseu17.sched.com/event/BxIY
https://www.youtube.com/watch?v=-3cpQjLU-5w
https://www.youtube.com/watch?v=-3cpQjLU-5w
https://lccocc2015.sched.com/event/3XhH/performance-monitoring-in-the-linux-kernel-davidlohr-bueso-suse
https://lccocc2015.sched.com/event/3XhH/performance-monitoring-in-the-linux-kernel-davidlohr-bueso-suse

MMTests

Supported Benchmarks

Already preconfigured (only a subset, in no particular order):

pgbench, sysbench-oltp (mariadb and postgres), pgioperf, ...
bonnie fio, filebench iozone, dbench4, ...

redis, memcached john-the-ripper ebizzy, phpbench apachebench siege, .

nas-pb, parsec, openfoam kernbench, stream, .
hackbench schbench, cyclictest unixbench, .
netperf, iperf, sockperf tbench, .

And new ones are actively being added

Custom ones:

Linux kernel load balancer, program startup time, THP scaling

Workloads like:

git workload, kernel dev. Workload, shell-scripts workload

Can run multiple of them:

Sequentially or in parallel



MMTests

Results and Stats

Each benchmark is run multiple
times (configurable) for statistical
significance
Collects and store configuration
info and results
Can do comparisons and statistic
analysis:
A-mean, H-mean, Geo-mean,
significance, percentiles, ..

/bin/compare-mmtests.pl —d

kernbench

Min
Min
Min
Min

Min
Min
Min
Min
Amean
Amean
Amean
Amean
Amean
Amean
Amean
Amean
Amean
Stddev
Stddev
Stddev
Stddev
Stddev
Stddev
Stddev
Stddev
Stddev

128
1024

4096

Higher
Higher
Higher
Higher

user-1
syst-1
elsp-1
user-2
syst-2
elsp-2
user-4
syst-4
elsp-4
user-1
syst-1
elsp-1
user-2
syst-2
elsp-2
user-4
syst-4
elsp-4
user-1
syst-1
elsp-1
user-2
syst-2
elsp-2
user-4
syst-4
elsp-4

kvm_4vcpu_default kvm_4vcpu_vpindef

kvm_4vcpu_vpin

kvm_4vcpu_vpinltoldef

kvm_4vcpu_vpinltol

kvm_4vcpu_vtune

P 4-default P 4-vpind P 4-vpin P 4-vpinltoldef p 4-vpinltol P 4-vt
780.30 ( 0.00%) 759.06 ( 2.72%) 760.22 ( 2.57%) 759.47 ( 2.67%) 760.42 ( 2.55%) 760.46 (2.
137.72 ( 0.00%) 115.40 ( 16.21%) 115.20 ( 16.35%) 115.53 ( 16.11%) 115.21 ( 16.34%) 114.71 ( 16.
939.27 ( 0.00%) 893.69 ( 4.85%) 892.40 ( 4.99%) 892.16 ( 5.02%) 895.05 ( 4.71%) 894.03 (&7
788.45 ( 0.00%) 831.66 ( -5.48%) 835.54 ( -5.97%) 898.11 ( -13.91%) 940.74 ( -19.32%) 784.19 (0.
145.85 ( 0.00%) 128.22 ( 12.09%) 128.00 ( 12.24%) 133.40 ( 8.54%) 134.22 ( 7.97%) 119.14 ( 18.
475.97 ( 0.00%) 488.13 ( -2.55%) 489.23 ( -2.79%) 524.41 ( -10.18%) 546.19 ( -14.75%) 467.45 (1.
804.00 ( 0.00%) 1257.69  ( -56.43%) 1254.59  ( -56.04%) 1256.15 ( -56.24%) 1258.04  ( -56.47%) 1258.00 ( -56
146.63 ( 0.00%) 168.79 ( -15.11%) 167.64 ( -14.33%) 169.01 ( -15.26%) 167.82 ( -14.45%) 167.80 (-14
246.88 ( 0.00%) 365.45 ( -48.03%) 363.86 ( -47.38%) 365.01 ( -47.85%) 364.61 ( -47.69%) 363.87 ( -47.
781.40 ( 0.00%) 759.86 ( 2.76%) 760.84 ( 2.63%) 760.33 ( 2.70%) 761.42 ( 2.56%) 761.69 (2.
139.74 ( 0.00%) 115.59 ( 17.28%) 115.28 ( 17.51%) 115.76 ( 17.16%) 115.52 ( 17.34%) 115.68 (17,
940.59 ( 0.00%) 896.38 ( 4.70%) 894.77 ( 4.87%) 895.99 ( 4.74%) 896.84 ( 4.65%) 896.41 (4.
789.39 ( 0.00%) 833.13 ( -5.54%) 837.54 ( -6.10%) 925.96 ( -17.30%) 946.22 ( -19.87%) 794.52 ( -0.
146.15 ( 0.00%) 129.14 ( 11.64%) 128.48 ( 12.09%) 134.91 ( 7.69%) 135.28 ( 7.44%) 119.64 ( 18.
476.51 ( 0.00%) 489.17 ( -2.66%) 490.34 ( -2.90%) 539.00 ( -13.12%) 548.77 ( -15.17%) 524.71 ( -10
807.94 ( 0.00%) 1258.54 | ((=55.77%) 1255.95] ( 255.45%) 1256.59 ( -55.53%) 1258.92) ( -55.82%) 1258.32 ( -55.
147.50 ( 0.00%) 169.33 ( -14.80%) 168.12 ( -13.98%) 169.40 ( -14.85%) 168.59 ( -14.30%) 167.94 (-13
247.90 ( 0.00%) 365.51 ( -47.45%) 364.01 ( -46.84%) 365.20 ( -47.32%) 364.86 ( -47.18%) 364.00 ( -46
0.98 ( 0.00%) 1.11 ( -12.71%) 0.56 ( 42.79%) 1.15 ( -17.44%) 1.62 ( -65.1 1.27 ( -29.
2.83 ( 0.00%) 0.20 ( 93.11%) 0.08 ( 97.18%) 0.33 ( 88.50%) 0.45 0.95 ( 66
1.84 ( ©.00%) 2.55 ( -38.49%) 2.16 ( -17.55%) 3.46 ( -88.21%) 2.39 2.08 (=32
1.09 ( 0.00%) 1.79 ( -63.62%) 1.74 ( -59.02%) 25.28 (-2212.40%) 5.89 8.99 (-721.
0.47  ( 0.00%) 1.07  (-127.99%) 0.73  ( -55.76%) 1.66 (-254.56%) 0.92 0.69 ( -47.
0.60 ( 0.00%) 1.07 ( -78.53%) 1.10 ( -83.41%) 13.12 (-2097.29%) 3.36 99.18 (-16508.
3.57 ( 0.00%) 0.83 ( 76.86%) 1.19 ( 66.52%) 0.74 ( 79.21%) 1.13 0.28 ( 92.
1.47 ( 0.00%) 0.75 ( 48.67%) 0.49 ( 66.58%) 0.40 ( 73.06%) 0.67 0.15 ( 89.
1.00 ( 0.00%) 0.06 ( 94.49%) 0.13 ( 86.78%) 0.18 ( 81.92%) 0.36 0.20 ( 80.

NET_TES
NET_TEST

1.00 (0.00%) (+0.00s)
1.00 (0.00%) (+0.00s)
1.00 (0.00%) (+0.00s)

0.00
0.00
0.00
1.00

./bin/compare-mmtests.pl

NET_TEST_
NET_TEST_B

BUS
usy

0.12 (-87.57%) (-58.30s)
0.19 (-81.22%) (-232.45s)
0.17 (-82.76%) (-225.25s)

-172.00
-232.45
-58.30
0.16

54%)
71%)
82%)
54%)
31%)
79%)

-47%)
.44%)

39%)
52%)
22%)
70%)
65%)
14%)
12%)
74%)

.86%)
.84%)

01%)

.43%)
.80%)

80%)

65%)
28%)



MMTests

NPB-D (lower == better)

host-tuned

VM-notopo
VM-nopin
VM-tuned

900
Plots 800
250000, ' ' Stream-I‘BM —
stream-1VM-notune s
stream-1VM-pin ===
200000 stream-1VM-pin-hgpg =1
stregan-1VM-pin-hag-topo———
[*]
% 150000
3
a
= 100000
50000
’ 2,
%
% %% % %
NPB, SEV (lower == better)
250
VM-noSEV s
VM-SEV s
200
150
100
50
0 . L
% R % “ %,

300

250

200

150

100

50

NPB-D, different CPU models (lower == better)

Host

MBytes/sec

60000

50000

40000

30000

20000

10000

Stream, 4 VMs

stream-4VMS-vm1
stream-4VMS-vm2
stream-4VMS-vm3
stream-4VMS-vm4




MMTests

Monitors

While the benchmark is running:
- Samples:
- top, mpstat, vmstat,
iostat, df, ..
—  Collect data from:
- perf, ftrace, ..

—  Plots monitors too

cpu-migrations
context-switches
cpu-m ations
context-switches

Hmean
Hmean
JUED:
JUED-

$ ./bin/compare-mmtests.pl -d work/log/
—--print-monitor perf-tim

-b stockfish -n

\

BASELINE, LOADED \

kvm_4vcpu_vpindef-opensuse-4-vpindef

llc 1

llc 2

llc 3

kvm_4vcpu_vpindef-opensuse-4-vpindef

llc 1

llc 2

llc 3

Total CPU Percentage

400

100

50

Node 0 Total CPU Usage

kvm 4\

M KV

\/w

Lkvmy\%vc

" kvm_4vcpu_default-opensuse-4-default
kvm _4vcpu_vpindef-opensuse-4-vpindef
kvm_4vcpu_vpin-opensuse-4-vpin
pu_vpin1toidef-opensuse-4-vpinitoldef
_4vcpu_vpinito1-opensuse-4-vpinitot <

kvm Vop vtune-opensuse-4-vtune
/1 ne- opensus 1G -Vign X
un t p suse G«vluve —.~—
Ve

50

100 150 200 250 300
Time

22




MMTests

Benchmark Config Files

Collection of bash export-ed variables

—  They're script themselves (can contain commands!)

S

W

export

# Test

# List
export
export
export
export
export

# MM Test Parameters

MMTESTS="stream"

$SHELLPACK INCLUDE/include-sizes.sh
get numa details

disk to setup (optional)

#export TESTDISK PARTITION=/dev/sdaé
#export TESTDISK FILESYSTEM=xfs
#export TESTDISK MKFS PARAM="-f -d agcount=8"

of monitors

RUN MONITOR=yes

MONITORS ALWAYS=

MONITORS GZIP="proc-vmstat top"
MONITORS WITH LATENCY="vmstat"
MONITOR UPDATE FREQUENCY=10

# stream

export
export
export
export
export
export

-march=znverl

STREAM SIZE=S$((1048576*3*2048))
STREAM_THREADS=S$ ( (NUMNODES*2) )

STREAM METHOD=omp

STREAM ITERATIONS=5

OMP PROC_BIND=SPREAD
MMTESTS_BUILD_CFLAGS="—m64 -lm -Ofast
-mcmodel=medium -DOFFSET=512"

@23




W

#export TESTDISK PARTITION=/dev/sda6
#export TESTDISK FILESYSTEM=xfs

—ma

rch=znverl -mcmodel=medium -DOFFSET=512"

MMTests e In Virtualization, these config files are
- shipped to and used inside of the
Benchmark Config Files
guest(s)
: : e Monitoring defined here happens inside the
CoIIectlorlm of b,GSh export-ed VO”Obl,E guest(s) too = How the benchmark threads
—  They're script themselves (can contair: run on the vCPU
# MM Test Parameters i # stream
export MMTESTS="stream" ! export STREAM SIZE=$((1048576*3%2048))
, export STREAM THREADS=S ( (NUMNODES*2) )
. S$SHELLPACK INCLUDE/include-sizes.sh i export STREAM METHOD=omp
get numa details i export STREAM ITERATIONS=5
, export OMP PROC BIND=SPREAD
# Test disk to setup (optional) i export MMTESTS BUILD CFLAGS="-m64 -lm -Ofast

#export TESTDISK MKFS PARAM="-f -d agcount=8"

# List of monitors

export RUN MONITOR=yes

export MONITORS ALWAYS=

export MONITORS GZIP="proc-vmstat top"
export MONITORS WITH LATENCY="vmstat"
export MONITOR UPDATE FREQUENCY=10

Can query the system characteristics.
Benchmark parameters can depend on that
Specific configurations, for each benchmark;
Check the shellpaks for details

(TO

DO: improve the docs about this)




MMTests

Host Config Files

== Collection of bash export-ed variables
They're script themselves (can contain commands!)

C

S

# Example MM Test host config file, for run-kvm.sh

export
export

export

export
export

# List
export
export
export
export
export
export

-

MMTESTS HOST IP="192.168.122.1"
MMTESTS AUTO PACKAGE INSTALL="yes"

MMTESTS VM=vml, vin2

MMTESTS NUMA POLICY="numad"
MMTESTS TUNED PROFILE="latency-performance"

of monitors

RUN_ MONITOR=yes

MONITORS ALWAYS=

MONITORS GZIP="proc-vmstat mpstat"
MONITORS WITH LATENCY="vmstat"
MONITOR PERF EVENTS=cpu-migrations
MONITOR UPDATE FREQUENCY=30

25



MMTests

Virtual Machines - fully managed mode

MMTests on the host manages the VMs' lifecycle via Libvirt [*]

= Can create VMs from Libvirt xml file

—  Can automatically provision/install VMs
- VM configuration is customizable in the host config file

—  Start, restart, shutdown the VMs as it sees fit

C S
# From the host config file:
export MMTESTS VMS="vml,vm2”

# Generic values, will be used for all VMs,
# 1if not otherwise specified

export MMTESTS VMS CPUS=4

export MMTESTS_VMS_MEMORY=8 129

vml CPUS=2
vml MEMORY=4096

vm2_CPUS=6
vm2_ MEMORY=6144
- O

) g
[*] Some of this is not merged. Available here: https://github.com/dfagagioli/mmtests/tree/wip/bench-virt



https://github.com/dfaggioli/mmtests/tree/wip/bench-virt

MMTests

Containers

MMTests on the “host” manages the containers' lifecycle via podman or docker

Can build containers from Dockerfile
Can create/pull down containers from registries

Containers configuration is customizable in the host config file

Start, restart, shutdown the containers as it sees fit

C

o)

# From the host config file:
export MMTESTS VMS="cntl,cnt2”

# Generic values, will be used for all containers,

# 1f not otherwise specified

export MMTESTS CONTS REGISTRY="registry.opensuse.org"

export MMTESTS CONTS IMAGE="opensuse/tumbleweed:latest"

export MMTESTS CONTS DOCKERFILE=./bin-cont/Dockerfile/opensuse-tumbleweed.Dockerfile

export cntl IMAGE="opensuse/leap:latest"
export cnt2 DOCKERFILE=/var/foo/bar/Dockerfiles/my cnt.Dockerfile

27



MMTests

Generic “remote entity” mode

MMTests does hot manage the entities where the benchmarks run

— It only knows their IP addresses
— Itis not even aware of what they arel!
-  VMs?
- Containers ?
= KubeVirt VMIs ?
—  Physical Hosts ? [*]
— Can't start, restart, deploy, etc
—  Still useful if wanting to run benchmarks, but MMTets support is not there yet

C (S

# From the host config file:
export MMTESTS VMS IP="192.168.122.24 192.168.122.38"
export MMTESTS VMS="vmi a vmi b"

[*] Should work just fine. But never tested!

28



Running Benchmarks in Multiple VMs

We need a bit of a special benchmarking suite

What's the performance of CPU bench, running concurrently in 2 VMs?

Host

VM 1 VM 2

NN (minlinl

a0n
%
uou
non
3o,
Jou

uouu uuu

Just start the benchmarks inside the VMs,

and let them run?

VM1 CPU bench
Iteration 2

vz [t ]

CPU bench CPU bench
Iteration 3 Iteration 4
CPU bench CPU bench CPU bench
Iteration 2 Iteration 3 Iteration 4

time

29




Running Benchmarks in Multiple VMs

We need a bit of a special benchmarking suite
— What's the performance of CPU bench running concurrently in 2 VMs?

Just start the benchmarks inside the VMs,

and let them run?

VM1 CPU bench CPU bench CPU bench
Iteration 2 Iteration 3 Iteration 4

A A

A A

i CPU bench CPU bench CPU bench
N d' “ “ [I I " VM2 Iteration 2 Iteration 3 Iteration 4
0 JouiZnN0gou piease no:!
Wl

u

time Iteration 1in VM1 vs. Nothing in VM2
lteration 2 in VM2 vs. lIteration 1in VM2
lteration 3 in VM1 vs. Iteration 2 in VM1

lteration 4 in VM1 vs. lteration 3 in VM2




Running Benchmarks in Multiple VMs

We need a bit of a special benchmarking suite

What's the performance of CPU bench running concurrently in 2 VMs?

Host

VM 1 VM 2

NN (minlinl

a0n
%
uou
non
3o,
Jou

uouu uuu

VMI

benchmark inside the various VMs:

Synchronization of each (iteration of each)

CPU bench
Iteration 2

CPU bench
Iteration 3

CPU bench
Iteration 4

vz [t ]

CPU bench
Iteration 2

CPU bench
Iteration 3

CPU bench
Iteration 4

time




Running Benchmarks in Multiple VMs

We need a bit of a special benchmarking suite

—  What's the performance of CPU bench running concur

Iterations start in sync!
e Inall VMs
e No matter when the

Synchronizat ) o

_ previous one finished
benchmark i
VM1 CPU bench CPU bench CPU bench
Iteration 2 Iteration 3 Iteration 4
CPU bench CPU bench CPU bench
VM2 Iteration 2 Iteration 3 Iteration 4
time

32




MMTests :Synchronized Runs & Iterations

It's worth checking out the code, even just for this ASCII diagram! :-D

Achieving synchronization:

Host and the VMs communicate

Token passing protocol
VMs do not talk to each other
All VMs talk to the host

The host implements the “barriers”
Before the start of a new benchmark
Before each iteration of the same benchmark

ASCII block diagram of the protocol




MMTests: Synchronized Runs & Iterations

And this is even prettier.. :-P

VM2 :
run-mmtests.sh
VM1 : VM3:
run-mmtests.sh run-mmtests.sh Host:
run-kvm. sh
I Kick
1
step n H
1
VM1 : '
step n VM2 : VM3: |
° 1
step n step n 1
1
1
1 VM1:
1
| i done n
1 1
1 1 VMI:
1
! ! ; done n
1
1
1 . 1
Kick !
| N i ' VML:
step n
| P ' done n
1
i |
1 1
1 )
1
VM1 :
step
n+1l




MMTests: Synchronized Runs & Iterations

Some 2 VMs Examples

¥ QEMU/KVM:151.155.144.136

mmtests-bench-1
Running

l mmtests-bench-2

Running

¥ QEMU/KVM:151.155.144.136

mmtests-bench-1

Running

i' mmtests-bench-2
e

Running

¥ QEMU/KVM:151.155.144.136

I mmtests-bench-1

Running

mmtests-bench-2
Running

(L) o o




MMTests: Synchronized Runs & Iterations

A 16 VMs Example

QEMU/KVM: xen136.virt.lab.novell.com

vm1
= Running

vm10
Running

vm11
Running

vm12
Running

vm13
Running

vm14
Running

vm15
Running

vm16
Running

vm2
Running

vm3
Running

vm4
Running

vm5
Running

vm6
Running

vm7
Running

vm8
Running

E 0 E

vm9
==— Running




= README.md

MMTests

MMTests is a configurable test suite that runs performance tests against arbitrary workloads. This is not the only test
framework but care is taken to make sure the test are accurate, and
Reporting and analysis is common across all benchmarks. Support exists for gathering additional telemetry while tests

D ocumen to t on are running and hooks exist for more detailed tracing using firace o per.

Quick Introduction

The top-level directory has a single driver script called run-matests.sh which reads a config file that describes how
the benchmarks should be configured and executed. In some cases, the same benchmarking tool may be used with

T h e reI S S O m et h I n g . different configurations that stresses the scenari.

Atest run can have any name. A common use case is simply to compare kernel versions but it can be anything —
different compiler, different userspace package, different benchmark configuration etc

Monitors can be optionally configured, but care should be taken as there is a possibility that they introduce overhead

O l \ G | t H ( b of their own. Hence, for some performance sensitive tests itis preferable to have no moritoring

Many of the tests download exteral benchmarks. An attempt will be made to download from a mirror if it exists. To get
an idea where the mirror should be located, grep for MIRROR LOCATION= in shellpacks/

In-line help & manpages
It's incomplete :- ( e
We're working on it

pagealloc-performance 5.8-vanilla
/run-mmtests.sh --no-monitor --config configs/config-pagealloc-performance 5.9-vanilla
cd work/log
/compare-kernels
mkdir /tmp/html/
7. ./compare-kernets. |

h --format html --output-dir /tmp/ntml > /tmp/html/index.html

The first step is optional. Some configurations are auto-generated from a template, particularly the filesystem-specific
ones.

./run-kvm.sh -h
run-kvm.sh [-pkonmDh] [-C CONFIG_HOST] [--vm VMNAME[,VMNAME][,...]] [--vm-xml-dir DIR[,DIR][,...]] run-mmtests-options

= 1392 500) | 01410 o R wwme @ 2
. Prints this help.
MMTests Tutorials performance Force performance CPUFreq governor on the host before starting the tests
host-logs Collect logs and hardware info about the host
Get MMTests -k |--keep-kernel Use whatever kernel the VM currently has.

-o|--offline-iothreads Take down some VM's CPUs and use for IOthreads
-m|--run-monitor Force enable monitoring on the host.
-n|--no-monitor Force disable monitoring on the host.
-C|--config-host CFG Use CFG as config file for the host.
--vm VMNAME[ ,VMNAME] Name(s) of the VMs where benchmarks will run. If they are
not defined already, there must be a config file (see -D).
If not specified, use $MARVIN_KVM_DOMAIN as VM name.
If that is not defined, use 'marvin-mmtests'.
-D|--vm-xml-dir DIR,[...] Where to find the libvirt config files for the VMs that
are not defined already. A (coma separated) list of dirs
can be specified, and there can even be multiple instances of
this parameter. The main MMTests directory 1is always checked.
Note that orders oof the directory matters, as MMTests will
stop scanning as soon as the first suitable config file is found.
e e rei s run-mmtests-options Parameters for run-mmtests.sh inside the VM (check them
with ./run-mmtests.sh -h).

Clone MMTests from GitHub:

do zypper in git
git clone hEtps://github. con/gormann/mtests. git

Your First MMTests Runs

Baseline Run

Pick a config and start a run. For instance, let’s run a Redis benchmark.

Sudo ./run-ARLests.sh --cOnTig configs/conrig-mendd-redis-snall BASELINE

Comparison Run

We now need at least another run, so we can compare. Just o inroduice some variation, lets add some disturbing tasks.

Results NOTE that 'run-mmtests-options', i.e., the parameters that will be used to execute
Now, this is how the results directory looks like: run-mmtests.sh inside the VMs, must always follow all the parameters intended for
run-kvm.sh itself.




Building a
Virtualization CI
Around MMTests - ¥




MMTests @ SUSE Kernel Performance Team

Meet Marvin (see Marvin: Automated assistant for development and ClI)

Used internally, Linux kernel performance testing. Reports sent to LKML.

Marvin : reserves machines, manages deployments (with autoyast), copies MMTests
across, executes tests and copies results back

Bob The Builder : monitors kernel trees, trigger (re)builds
Johnny Bravo : generating reports

Manual : developer tool (manual queueing)
Sentinel : “guards” against regressions
Impera : bisection

Janus : For distro comparisons



https://www.youtube.com/watch?v=jOnIQJQzW3s

MMTests-CI

Another Marvin? Well, different needs, different environment/lab Running on 2 servers

(not both 100% dedicated

Code available at: https://github.com/dfaggioli/mmtests-ci. to this yet)

= Still WIiP, not sure it's worth checking it out for now.. AMD EPYC 7713
. . Online CPU (s) : 256
= Runs entirely on the test-host. No ext. Controller machine Thread(s) per core: 2
- Try to avoid reprovisioning the host at each run CREEGHE) 1P SerelITieg o
- If t/ d that, the host need to “self-reprovision” itself Socket (s) : "
If we want/nee ) provision” | NUMA node (s) : 5
Doable in our lab, with internal scripts RAM : 1.2T4
—  Multiple OSes allowed on the same host, in different partitions
—  Cycle through all of them
o AMD EPYC 7452
Runs periodically | | il CE(E) - ”
—  No change/commit/update triggered. Not yet, at least Thread(s) per core: 2
—  Too many test cases, too few servers :-( Comeiz) mer sockets 92
. . . . . Socket (s) : 1
— Code & configuration: all in that git repo NUMA node (s) : 1
—  Checkout the repo, change things like the followings and commit: RAM: 62GB

Adding/changing scripts for running tests

Altering an OS’ test-plan
—  Atthe next run (for that OS) changes will be picked up and be
effective

40


https://github.com/dfaggioli/mmtests-ci

MMTests-CI

Another Marvin? Kind of. We have different needs + different environment/lab

__________________________________

Running on 2 servers
. (not both 100% dedicated
! to this yet)

___________________________________

Code available at: https://github.com/dfaggioli/mmtests-ci.

= Still WIiP, not sure it's worth checking it out for now.. AMD EPYC 7713

Online CPU(s) : 256
— Each OS has a test-plan Thread(s) per core: 2
- Example of tests: distro RPMs, upstream QEMU, upstream kernel, etc gori(i)( I;er socket: 24
— Each test can consist of: NLOJDC/:IAenoZe.(s) : 2
- Multiple VM configurations: RAM: 1.2T4
- single VM, multi-VMs, different VM sizes, host & guest tuning
- Multiple benchmarks:
- run one after the other, in all the configurations AMD EPYC 7452
— Tests (can) have setup phases. Done before starting running online CPU(s): 64
the benchmarks oread(s) per core: 2
) . . ore (s) per socket: 32
— It's possible to reboot the server (even multiple times) Socket (s) : 1
—  During setup. E.g, for installing a specific kernel o nede(s)s s

- Between & during tests the tests. E.g, between benchmarks or

group of benchmarks

4


https://github.com/dfaggioli/mmtests-ci

MMTests-Cl @ SUSE

Our Own Downstream Testing: on-going (with some parts still WiP)

E.g, testing the virtualization stack of our currently supported OSes

1.
2.
3.

4.

Boot the server into one of our supported OSes, say, SLE 15-SP4
Try to updates all the OS packages
Did anything change since previous run ?
- kg, packages receiving maintenance updates & backport
If yes, run the benchmarks
—  Baremetal (can be useful, for reference)
- In1VM, multiple sizes, multiple configurations
- Inmultiple VMs, multiple sizes, multiple configurations
Store results
—  Check for regressions
Optional: [Re]Provision another OS (say, SLE 15-SP3) in a different partition on the server
Boot into that OS
—  There, go through all these same steps
—  Then reboot into yet another partition/0OS
- At some point, one of those other OSes on the server will reboot it into “us”

Go back to1

42



MMTests-Cl @ QEMU Community

Upstream Testing: Working on It

E.g., testing the last two released versions of QEMU

1. Boot the server into openSUSE Tumbleweed
2. Updates all the OS packages

3. Did anything change since previous run ?
- Eg, new versions of some packages (Tumbleweed is rolling!)
4. Ifyes:
-  Download QEMU 7.1.0. Build it. Install it.
= Run the benchmarks:
- In1VM, multiple sizes, multiple configurations
- Inmultiple VMs, multiple sizes, multiple configurations
- Download QEMU 7.0.0. Build it. Install it
= Run the benchmarks:
- In1VM, multiple sizes, multiple configurations
- Inmultiple VMs, multiple sizes, multiple configurations
5. Storeresults
—  Check for regressions

P 6. Gobacktol

43



MMTests-Cl @ QEMU Community

Upstream Testing: Working on It

E.g, testing the “latest” QEMU git commit:

1.
2.
3.
4.

Boot the server into .. What ?
Updates all the OS packages .. Or not ?
Has the tip of QEMU git been updated since last run ?
If yes:
- Pull QEMU master, with the latest changes. Build it. Install it
= Run the benchmarks:
- In1VM, multiple sizes, multiple configurations
- In multiple VMs, multiple sizes, multiple configurations
Store results
—  Check for regressions
Go backto]

44



MMTests-Cl @ QEMU Community

Analyzing results. Triaging and reporting

Making the results available:

Full logs and results preserved
Generate per-{host, OS, test benchmark} MMTests’ dashboard
—  Should be fine to publish them
Comparison baseline:
— Milestones, if any
— If not, move (for now, manually) it forward each week/month/.., if results are consistent

When a regression is identified:

Triage and “bisect”
= Manually, for now
— By ourteam

Reporting to upstream:

cwe —

Similar to what Lukds s doing here
Manually, done by us: no automatic reports/email, for now a5



https://lore.kernel.org/qemu-devel/a0f8c750-ed7b-908a-1a29-bf03004579e4@redhat.com/

Are There Any

Questions ? ﬂ

GCWE  opyright © SUSE 2021




Are-Fhere-Any
Questions?2

| Have Some
Questions !

GCWE  opyright © SUSE 2021




MMTests-Cl @ QEMU Community

Feedback Wanted! On what baseline shall we test the latest git ?

“Boot the server into .. What ?”

openSUSE Tumbleweed (or anything that
may have received updates, since the last
run)

—  Packages versions on host = changes
-  QEMU codebase = changes

GOOD: We always test latest git against an
OS with the most recent software
components (e.g, new kernels!)

BAD: How do we know which of the two (set
of) changes caused a regression ?

Frozen (or rarely updated) host OS
—  Packages versions on host = never
change
- QEMU codebase = changes

GOOD: If there's a difference between two
runs, we know for sure from where it
comes

BAD: With time, host OS software will
become stale

48



MMTests-Cl @ QEMU Community

Choices! Choices! Choices!

THEMORE

— How many benchmarks ?
— Which ones ?

— How many different configurations ?
— Which ones ?

— How many different VM sizes ?
— Which one

.........

L  » |
Isn't it just the more, the merrier ? Yes! But: THE MEHHIEH

— The more, the longer it takes:
— Longer time spans between consecutive iterations of the same benchmark
— Harder to identify changes responsible of regressions
— The more, the higher the volume of data produced:
cw —  Time consuming/difficult to analyze a9




MMTests-Cl @ QEMU Community

Feedback Wanted! Do the following proposals/ideas make sense ?

“Run the benchmarks” = Which ones?

=  CPU benchmarks:

- nas-pb, kernbench, sysbench, hackbench
— Memory benchmarks:
- Stream, memcached
— 1/O benchmarks:
- fio, iozone, sockperf, netperf
— More complex “workloads™
- VM Startup time, cyclictest + hackbench, ebizzy



MMTests-Cl @ QEMU Community

Feedback Wanted! Do the following proposals/ideas make sense ?

“In1VM, multiple sizes, multiple configurations” = Which ones?

- Sizes:
-  #VCPUs =1, 2, % of the host pCPUs, same as the host pCPUs
—~  RAM = 2GB, ¥ of the host RAM, 9/10 of the host RAM
—  Configuration:
- Just default
- With IO-threads
= With vCPU & memory pinning + virtual topology
—  With PCI-Passthrough / SR-IOV

51



MMTests-Cl @ QEMU Community

Feedback Wanted! Do the following proposals/ideas make sense ?

“In multiple VMs, multiple sizes, multiple configurations” = Which ones?

—  Sizes:
-  #VvCPUs: 1, 8,16
—  # VMs:
- Afew: Tot # vCPUS = % of the host pCPUs
— Alot: Tot # of vCPUs = same as the host pCPUs
— Overload: Tot # vCPUS = 15 times the # of host pCPUs

52



MMTests-Cl @ QEMU Community

Feedback Wanted! Not sure how to deal with host OS = guest OS cases ..

“Did anything change since previous run ?”

= Host changes:
—  Easy to check (the ClI scripts run on the host)
— Guest changes:
- Eg,I'mon a SLE 15-SP4 host. | want to test a 15-SP3 VM
- No updates for the host since the last test run | did here
- An updated kernel have been released for 15-SP3, since the last run
- But the VM is off, until I actually decide to start the test.. So
how do | figure that out ?
= Boot all the VMs and check for updates inside of them for deciding whether to rerun ?

Seems the proper solution, but it's cumbersome and complex

= Somehow setup alerts for (potential) guest updates. Use them to force a test run
Doable.. With a lot of test specific alerts/trigger (random OS update available, upstream kernel available, etc)

= Once in a while, run the test anyway, even if it would seem unnecessary ?

Easy, but potentially wasteful
@cwe  How longis “a while” ?

= Only do “homogenous runs”, i.e, host OS == (all) gues(s) OS(es)

53



MMTests-Cl @ QEMU Community

Feedback Wanted! Some more technical quirks about some of the benchmarks

Measuring a VM’'s boot time = How to do properly ?

— Fromvirsh start tologin: ? But it includes guest kernel boot time
— From git start to GRUB ? Nice but tricky to measure
— Fromvirsh start to prompt of a special (small) direct kernel + initrd boot ?

Measuring QEMU’'s memory overhead

— What to sample? Which thread's RSS ?
— When to sample? Just once at the beginning ? Does it changes over time ?

Heterogenous configurations:

— Host OS = guest OS(es) = Not planned right now
—  Different workload in each VM = Not planned right now

54



MMTests-Cl @ QEMU Community

Feedback Wanted! Results aggregation in case of multiple VMs

= Run STREAM in 4 VMs
- Resultis 4 results !
= Run STREAM in 16
- Resultis 16 results !

—  What's the result of this STREAM run with 4 VMS ?
— How do we compare:
“Run in 4 VMs today” VS “Run in 4 VMs last week” ?
—~  We need a single number [ set of stats
— Max, Min, Avg, Std: of the 4 per-VM results
= Copy = AVG(copy[vml], copyl[vm2],
copyl[vm3], copyl[vm4])
= std should give an indication of the fairness,
at host scheduling level
= Min & Max could give indications about latency

MBytes/sec

MBytes/sec

60000

50000

40000 r

30000

20000

10000

18000

16000

14000

12000

10000 t

8000 r

6000

4000

2000

Stream, 4 VMs

Stream-4VMS-vm1 mmmmm

stream-4VMS-vm?2 mmm |

stream-4VMS-vm3 ===

stream-4VMS-vm4 === |




For more information, contact SUSE at:

+1800 796 3700 (U.S./Canada)

Maxfeldstrasse 5
90409 Nuremberg

www.suse.com

© 2020 SUSE LLC. All Rights Reserved. SUSE
and the SUSE logo are registered trademarks
of SUSE LLC in the United States and other
countries. All third-party trademarks are the
property of their respective owners.



Disclaimer

When using MMTests for day-to-day development

Beware that;

= mustrun as root
— It changes your system
—  Apply policies (e.g, cpufreq governor),
install packages
— Some are rolled back. Some aren't!
— It downloads the benchmarks from Internet
= While running as root

— Can this be trusted ? W‘““"“G

—  (Workaround: setup a mirror and vet con

Accepting an advice:

— Use it on “cattle” test machines, not on “pet” workstations

cwe 57



