
Copyright © SUSE 2021

QEMU & KVM Automated
Performance Benchmarking @ SUSE

SUSE Labs Conference 2021

Dario Faggioli, SUSE, Italy

Copyright © SUSE 2021

Dario Faggioli

Virtualization Software Engineer

Ph.D in real-time systems, then
Citrix (2011), now SUSE (2018)

Worked on Linux scheduling
(SCHED_DEADLINE), Xen hypervisor
(not only) scheduling (Credit2),
QEMU & KVM upstream and
downstream

Tend to focus on
“anything performance”

Self Introductions
Who I am, what I do...

2

In openSUSE, since 2018 too

User:
- Tumbleweed
- MicroOS Desktop

Contributor:
- Virtualization packages
- Some tracing packages
- MicroOS Deskop

dfaggioli@suse.com
@DarioFaggioli
@dfaggioli:matrix.org
dariof (IRC)

Ale FƄƊƤƦolƌ (5yo),MarƎƈƯs ƬƑ paƓƈƯ

mailto:dfaggioli@suse.com
https://twitter.com/DarioFaggioli

Copyright © SUSE 2021 3

Agenda

— Why benchmarking Virtualization

— Tools for benchmarking
Virtualization

— What to do for benchmarking
Virtualization

Copyright © SUSE 2021

Let’s avoid performance regressions, between SLE[1] 15-SP3 and SLE 15-SP4:

— Run benchmarks CPU bench, I/O bench and MEM bench on 15-SP3
— Run benchmarks CPU bench, I/O bench and MEM bench on 15-SP4

— Compare!

[1] SUSE Linux Enterprise

Performance Testing
A (real) story: releasing a new version of the OS

15-SP4:
- glibc 2.31
- systemd 249
- Kernel 5.14.21
- QEMU 6.2.0
- Libvirt 7.1.0

15-SP3:
- glibc 2.31
- systemd 246
- kernel 5.3.18
- QEMU 5.2.0
- Libvirt 7.1.0

CPU
bench MEM

bench

I/O
bench

Icons by Smashicons and Payungkead @ www.flaticon.com

https://www.flaticon.com/authors/smashicons
https://www.flaticon.com/authors/payungkead
http://www.flaticon.com

Copyright © SUSE 2021

Performance Testing
A (real) story: releasing a new version of the OS

Let’s avoid performance regressions, between SLE 15-SP3 and SLE 15-SP4:

— ALERT: CPU bench is 12% slower on SP4 !!
– It can be systemd ⇒ different version
– It can be the kernel ⇒ different version

— Note that:
– It can’t be glibc ⇒ same version [1]
– It can’t be QEMU ⇒ different version, but not involved
– It can’t be Libvirt ⇒ same version and not involved

 [1] Well, it still can be, due to different patches, etc. Just bear with me, it’s an example

15-SP3:
- glibc 2.31
- systemd 246
- kernel 5.3.18
- QEMU 5.2.0
- Libvirt 7.1.0

15-SP4:
- glibc 2.31
- systemd 249
- Kernel 5.14.21
- QEMU 6.2.0
- Libvirt 7.1.0

Copyright © SUSE 2021

Performance Testing: Enters Virtualization
A (real) story: releasing a new version of the OS

Let’s avoid performance regressions, between SLE 15-SP3 and SLE 15-SP4:

— Run benchmarks CPU bench, I/O benchand MEM bench in a 15-SP3 VM, on a 15-SP3 host
— Run benchmarks CPU bench, I/O bench and MEM bench in a 15-SP4 VM, on a 15-SP4 host

15-SP4:
- glibc 2.31
- systemd 249
- kernel 5.14.21
- QEMU 6.2.0
- Libvirt 7.1.0

15-SP4:
- glibc 2.31
- systemd 249
- kernel 5.14.21

15-SP3 host:
- glibc 2.31
- systemd 246
- kernel 5.3.18
- QEMU 5.2.0
- Libvirt 7.1.0

15-SP3 VM:
- glibc 2.31
- systemd 246
- kernel 5.3.18

Copyright © SUSE 2021

Performance Testing: Enters Virtualization
The plot thickens…

Let’s avoid performance regressions, between SLE 15-SP3 and SLE 15-SP4:

— ALERT: CPU bench is 12% slower on SP4 !!
– It can be host systemd
– It can be guest systemd
– It can be host kernel
– It can be guest kernel
– It can be (host!) QEMU

15-SP4:
- glibc 2.31
- systemd 249
- kernel 5.14.21
- QEMU 6.2.0
- Libvirt 7.1.0

15-SP4:
- glibc 2.31
- systemd 249
- kernel 5.14.21

15-SP3 host:
- glibc 2.31
- systemd 246
- kernel 5.3.18
- QEMU 5.2.0
- Libvirt 7.1.0

15-SP3 VM:
- glibc 2.31
- systemd 246
- kernel 5.3.18

Copyright © SUSE 2021

Performance Testing: Enters Virtualization… Take II
The plot thickens…

More combinations:

— Run benchmarks CPU bench, I/O bench and MEM bench in a 15-SP3 VM, on a 15-SP3 host
— Run benchmarks CPU bench, I/O bench and MEM bench in a 15-SP3 VM, on a 15-SP4 host
— Run benchmarks CPU bench, I/O bench and MEM bench in a 15-SP4 VM, on a 15-SP4 host
— Run benchmarks CPU bench, I/O bench and MEM bench in a 15-SP4 VM, on a 15-SP3 host

15-SP3 host:
- glibc 2.31
- systemd 246
- kernel 5.3.18
- QEMU 5.2.0
- Libvirt 7.1.0

15-SP4:
- glibc 2.31
- systemd 249
- kernel 5.14.21
- QEMU 6.2.0
- Libvirt 7.1.0

15-SP3 VM:
- glibc 2.31
- systemd 246
- kernel 5.3.18

15-SP4:
- glibc 2.31
- systemd 249
- kernel 5.14.21

15-SP3 host:
- glibc 2.31
- systemd 246
- kernel 5.3.18
- QEMU 5.2.0
- Libvirt 7.1.0

15-SP4 VM:
- glibc 2.31
- systemd 249
- kernel 5.14.21

15-SP4:
- glibc 2.31
- systemd 249
- kernel 5.14.21
- QEMU 6.2.0
- Libvirt 7.1.0

15-SP3:
- glibc 2.31
- systemd 246
- kernel 5.3.18

Copyright © SUSE 2021

Performance Testing: Enters Virtualization… Take III
The plot thickens…

Different VM “sizes”:

— Run benchmarks in a 1 vCPU 4GB RAM 15-SP3 VM, on a 15-SP3 host
— Run benchmarks in a 16 vCPUs 64GB RAM 15-SP3 VM, on a 15-SP3 host
— Run benchmarks in a 128 vCPUs 2TB RAM 15-SP3 VM, on a 15-SP3 host
— … … …
— Run benchmarks in a 1 vCPU 4GB RAM 15-SP3 VM, on a 15-SP4 host
— Run benchmarks in a 16 vCPUs 64GB RAM 15-SP3 VM, on a 15-SP4 host
— Run benchmarks in a 128 vCPUs 2TB RAM 15-SP3 VM, on a 15-SP4 host
— … … …
— Run benchmarks in a 1 vCPU 4GB RAM 15-SP4 VM, on a 15-SP4 host
— Run benchmarks in a 16 vCPUs 64GB RAM 15-SP4 VM, on a 15-SP4 host
— Run benchmarks in a 128 vCPUs 2TB RAM 15-SP4 VM, on a 15-SP4 host
— … … …

Copyright © SUSE 2021

Performance Testing: Enters Virtualization… Take IV
The plot thickens…

Different VM & host configuration (e.g., VM’s virtual topology, host-level tuning):

— Run benchmarks in a 4 vCPU 8GB RAM 15-SP3 VM, default config, on a 15-SP3 host
— Run benchmarks in a 4 vCPUs 8GB RAM 15-SP3 VM, with virtual topology, pinned

vCPUs, IO-Threads and Emulator threads, on a 15-SP3 host
— … … …
— Run benchmarks in a 4 vCPU 8GB RAM 15-SP3 VM, default config, on a 15-SP4 host
— Run benchmarks in a 4 vCPUs 8GB RAM 15-SP3 VM, with virtual topology, pinned

vCPUs, IO-Threads and Emulator thread, on a 15-SP4 host

10

p0 p1 p2 p3 p4 p5

v0 v1 v2 v3

p0 p1 p2 p3 p4 p5

v0 v2v1 v3

Non pinned
IO Threads

1 IO Thread
pinned to
socket 0

Pinned
EMU ThreadPinned vCPUs

4 vCPUs VM

HOST

Default
vTopology

Copyright © SUSE 2021

Performance Testing: Enters Virtualization… Take V
The plot thickens…

Multiple VMs:

— Run benchmarks CPU bench, I/O bench and MEM bench in a 15-SP3 VM, on a 15-SP3 host
— Run benchmarks CPU bench, I/O bench and MEM bench in 2 15-SP3 VMs, on a 15-SP3 host
— Run benchmarks CPU bench, I/O bench and MEM bench in 4 15-SP3 VMs, on a 15-SP3 host
— … … …
— Run benchmarks CPU bench, I/O bench and MEM bench in a 15-SP4 VM, on a 15-SP4 host
— Run benchmarks CPU bench, I/O bench and MEM bench in 2 15-SP4 VMs, on a 15-SP4 host
— Run benchmarks CPU bench, I/O bench and MEM bench in 4 15-SP4 VMs, on a 15-SP4 host
— … … …

15-SP3 host

15-SP3 VM

15-SP3 host

15-SP3 VM

15-SP3 VM

15-SP3 host

15-SP3 VM

15-SP3 VM

15-SP3 VM

15-SP3 VM

15-SP4 host

15-SP4VM

15-SP4 host

15-SP4 VM

15-SP4 VM

15-SP4 host

15-SP4 VM

15-SP4 VM

15-SP4 VM

15-SP4 VM

Copyright © SUSE 2021

Heterogeneous workloads, inside the various VMs:

— Run:
– benchmark CPU bench in a 15-SP3 VM, on a 15-SP3 host
– benchmark I/O bench in a 15-SP3 VM, on the same 15-SP3 host

— … … …
— Run:

– benchmark CPU bench in a 15-SP3 VM, on a 15-SP4 host
– benchmark I/O bench in a 15-SP3 VM, on the same 15-SP4 host

— … … …
— Run:

– benchmark CPU bench in a 15-SP4 VM, on a 15-SP4 host
– benchmark I/O bench in a 15-SP4 VM, on the same 15-SP4 host

Performance Testing: Enters Virtualization… Take VI
The plot thickens…

15-SP3 host

15-SP3 VM

15-SP3 VM

15-SP4 host

15-SP3 VM

15-SP3 VM

15-SP4 host

15-SP4 VM

15-SP4 VM

Copyright © SUSE 2021

Performance Testing: Enters Virtualization… Take WTH !!!
<<Infinite Diversity in Infinite Combinations>> (cit.)

Putting everything together:

— For each host OS:
– Guest OS == host OS …

– … but also different!
– In one VM …

– … but also in > 1 VMs!
– When all of them have the same size …

– … but also when they have different sizes!
– In one (e.g., the default one) host & VMs configuration

– … but also in different host & VMs configurations!
– Running the same workloads in all the VMs …

– … but also running different workloads in each one!

https://memory-alpha.fandom.com/wiki/IDIC

Copyright © SUSE 2021

|--------|---------------------------------|-------------------------|
VM RAM	SLES15SP2 = QEMU 5.2.0	SLES15SP3 == QEMU 6.2.0
2G	real 0m2.642s	real 0m4.508s
--------	---------------------------------	-------------------------
224G	real 0m14.867s	real 0m57.992s
--------	---------------------------------	-------------------------
1024G	real 0m34.106s	real 4m10.741s
--------	---------------------------------	-------------------------

14

Examples I
VM Size

— Default number of memory pre-allocation threads in QEMU went from #vCPUS to 1
– (Large) VM startup time was not happy!
– Learned the hard way with customer bug 1197084

https://bugzilla.suse.com/show_bug.cgi?id=1197084

Copyright © SUSE 2021 15

Examples II
VM Configuration

— Virtual topology + vCPU pinning
resulted in different in-guest kernel
behavior when waking up tasks

– See: Virtual Topology for Virtual
Machines: Friend or Foe?

— Presence or absence of an L3 in the
virtual topology resulted in glibc to
behave differently, inside the guest, in
turn resulting in performance
anomalies:

– See: Virtual Topology for Virtual
Machines: Friend or Foe?

https://www.youtube.com/watch?v=8yA2SNnx2Ko
https://www.youtube.com/watch?v=8yA2SNnx2Ko
https://www.youtube.com/watch?v=8yA2SNnx2Ko
https://www.youtube.com/watch?v=8yA2SNnx2Ko

Copyright © SUSE 2021 16

Examples III
Multiple VMs

— Fairness issues with the Linux Core-Scheduling patch, identified by benchmarking with
multiple VMs

– See: Core Scheduling, Some USe Cases, OSPM 2020

http://retis.sssup.it/ospm-summit/

Copyright © SUSE 2021 Copyright © SUSE 2021

Virtualization
 Performance
 Test Suites,
 Anyone?

17

Copyright © SUSE 2021

“MMTests is a configurable test suite that
runs a number of common workloads of
interest to MM developers.” (Sept. 2012, LKML)

⇒ Now it is a lot more !

⇒ Including Virtualization !!!

— Fetches, builds, configures & runs a (set
of) benchmark(s)

— https://github.com/gormanm/mmtests
— GH PRs, email to Mel Gorman or myself
— Bash & Perl

18

MMTests
The tool for the job

There has been previous talks.

— Me, FOSDEM 2020, Automated Performance
Testing for Virtualization with MMTests

— Me, OSPM 2020, Scheduler benchmarking with
MMTests

— Me, SUSE Labs Conference 2021, (Not Just) VM
BEnchmarking with MMTests: Some Updates

— Mel Gorman, SUSE Labs Conference 2018, Marvin:
Automated assistant for development and CI

— Jan Kara, Open Source Summit 2017, Detecting
Performance Regressions in the Linux Kernel

— Jan Kara, SUSE Labs Conference 2017, The
Performance Team's Grid

— Davidlohr Bueso, LinuxCon NA 2015, Performance
Monitoring in the Linux Kernel

https://groups.google.com/forum/#!topic/linux.kernel/_EPle_ptNFk
https://github.com/gormanm/mmtests
https://archive.fosdem.org/2020/schedule/event/testing_automated_performance_testing_virtualization/
https://archive.fosdem.org/2020/schedule/event/testing_automated_performance_testing_virtualization/
https://lwn.net/Articles/820823/
https://lwn.net/Articles/820823/
https://www.youtube.com/watch?v=H_qvdemBKA0
https://www.youtube.com/watch?v=H_qvdemBKA0
https://archive.fosdem.org/2020/schedule/event/testing_automated_performance_testing_virtualization/
https://archive.fosdem.org/2020/schedule/event/testing_automated_performance_testing_virtualization/
https://osseu17.sched.com/event/BxIY
https://osseu17.sched.com/event/BxIY
https://www.youtube.com/watch?v=-3cpQjLU-5w
https://www.youtube.com/watch?v=-3cpQjLU-5w
https://lccocc2015.sched.com/event/3XhH/performance-monitoring-in-the-linux-kernel-davidlohr-bueso-suse
https://lccocc2015.sched.com/event/3XhH/performance-monitoring-in-the-linux-kernel-davidlohr-bueso-suse

Copyright © SUSE 2021

Already preconfigured (only a subset, in no particular order):

— pgbench, sysbench-oltp (mariadb and postgres), pgioperf, ...
— bonnie, fio, filebench, iozone, dbench4, ...
— redis, memcached, john-the-ripper, ebizzy, phpbench, apachebench, siege, . . .
— nas-pb, parsec, openfoam, kernbench, stream, . . .
— hackbench, schbench, cyclictest, unixbench, . . .
— netperf, iperf, sockperf, tbench, . . .
— And new ones are actively being added

Custom ones:

— Linux kernel load balancer, program startup time, THP scaling

Workloads like:

— git workload, kernel dev. Workload, shell-scripts workload

Can run multiple of them:

— Sequentially or in parallel
19

MMTests
Supported Benchmarks

Copyright © SUSE 2021 20

MMTests
Results and Stats

— Each benchmark is run multiple
times (configurable) for statistical
significance

– Collects and store configuration
info and results

— Can do comparisons and statistic
analysis:

– A-mean, H-mean, Geo-mean,
significance, percentiles, …

Copyright © SUSE 2021 21

MMTests
Plots

Copyright © SUSE 2021 22

MMTests
Monitors

— While the benchmark is running:
– Samples:

– top, mpstat, vmstat,
iostat, df, …

– Collect data from:
– perf, ftrace, …

— Plots monitors too

$./bin/compare-mmtests.pl -d work/log/ -b stockfish -n BASELINE,LOADED \
 --print-monitor perf-time-stat

 BASELINE LOADED
Hmean cpu-migrations 3.33 2.01
Hmean context-switches 29.12 30.73
Max cpu-migrations 999.00 999.00
Max context-switches 195.61 72.69

Copyright © SUSE 2021 23

MMTests
Benchmark Config Files

MM Test Parameters
export MMTESTS="stream"

. $SHELLPACK_INCLUDE/include-sizes.sh
get_numa_details

Test disk to setup (optional)
#export TESTDISK_PARTITION=/dev/sda6
#export TESTDISK_FILESYSTEM=xfs
#export TESTDISK_MKFS_PARAM="-f -d agcount=8"

List of monitors
export RUN_MONITOR=yes
export MONITORS_ALWAYS=
export MONITORS_GZIP="proc-vmstat top"
export MONITORS_WITH_LATENCY="vmstat"
export MONITOR_UPDATE_FREQUENCY=10

— Collection of bash export-ed variables
– They’re script themselves (can contain commands!)

stream
export STREAM_SIZE=$((1048576*3*2048))
export STREAM_THREADS=$((NUMNODES*2))
export STREAM_METHOD=omp
export STREAM_ITERATIONS=5
export OMP_PROC_BIND=SPREAD
export MMTESTS_BUILD_CFLAGS="-m64 -lm -Ofast
 -march=znver1 -mcmodel=medium -DOFFSET=512"

Copyright © SUSE 2021

MM Test Parameters
export MMTESTS="stream"

. $SHELLPACK_INCLUDE/include-sizes.sh
get_numa_details

Test disk to setup (optional)
#export TESTDISK_PARTITION=/dev/sda6
#export TESTDISK_FILESYSTEM=xfs
#export TESTDISK_MKFS_PARAM="-f -d agcount=8"

List of monitors
export RUN_MONITOR=yes
export MONITORS_ALWAYS=
export MONITORS_GZIP="proc-vmstat top"
export MONITORS_WITH_LATENCY="vmstat"
export MONITOR_UPDATE_FREQUENCY=10

stream
export STREAM_SIZE=$((1048576*3*2048))
export STREAM_THREADS=$((NUMNODES*2))
export STREAM_METHOD=omp
export STREAM_ITERATIONS=5
export OMP_PROC_BIND=SPREAD
export MMTESTS_BUILD_CFLAGS="-m64 -lm -Ofast
 -march=znver1 -mcmodel=medium -DOFFSET=512"

24

MMTests
Benchmark Config Files

— Collection of bash export-ed variables
– They’re script themselves (can contain commands!)

● Can query the system characteristics.
● Benchmark parameters can depend on that
● Specific configurations, for each benchmark;

Check the shellpaks for details
(TODO: improve the docs about this)

● In Virtualization, these config files are
shipped to and used inside of the
guest(s)

● Monitoring defined here happens inside the
guest(s) too ⇒ How the benchmark threads
run on the vCPU

Copyright © SUSE 2021 25

MMTests
Host Config Files

Example MM Test host config file, for run-kvm.sh
export MMTESTS_HOST_IP="192.168.122.1"
export MMTESTS_AUTO_PACKAGE_INSTALL="yes"

export MMTESTS_VM=vm1,vm2

export MMTESTS_NUMA_POLICY="numad"
export MMTESTS_TUNED_PROFILE="latency-performance"

List of monitors
export RUN_MONITOR=yes
export MONITORS_ALWAYS=
export MONITORS_GZIP="proc-vmstat mpstat"
export MONITORS_WITH_LATENCY="vmstat"
export MONITOR_PERF_EVENTS=cpu-migrations
export MONITOR_UPDATE_FREQUENCY=30

— Collection of bash export-ed variables
– They’re script themselves (can contain commands!)

Copyright © SUSE 2021

Virtual Machines - fully managed mode

MMTests on the host manages the VMs’ lifecycle via Libvirt [*]

— Can create VMs from Libvirt xml file
— Can automatically provision/install VMs

– VM configuration is customizable in the host config file
— Start, restart, shutdown the VMs as it sees fit

[*] Some of this is not merged. Available here: https://github.com/dfaggioli/mmtests/tree/wip/bench-virt
26

MMTests

From the host config file:
export MMTESTS_VMS=”vm1,vm2”

Generic values, will be used for all VMs,
if not otherwise specified
export MMTESTS_VMS_CPUS=4
export MMTESTS_VMS_MEMORY=8129

vm1_CPUS=2
vm1_MEMORY=4096

vm2_CPUS=6
vm2_MEMORY=6144

https://github.com/dfaggioli/mmtests/tree/wip/bench-virt

Copyright © SUSE 2021 27

MMTests
Containers

MMTests on the “host” manages the containers' lifecycle via podman or docker

— Can build containers from Dockerfile
— Can create/pull down containers from registries

– Containers configuration is customizable in the host config file
— Start, restart, shutdown the containers as it sees fit

From the host config file:
export MMTESTS_VMS=”cnt1,cnt2”

Generic values, will be used for all containers,
if not otherwise specified
export MMTESTS_CONTS_REGISTRY="registry.opensuse.org"
export MMTESTS_CONTS_IMAGE="opensuse/tumbleweed:latest"
export MMTESTS_CONTS_DOCKERFILE=./bin-cont/Dockerfile/opensuse-tumbleweed.Dockerfile

export cnt1_IMAGE="opensuse/leap:latest"
export cnt2_DOCKERFILE=/var/foo/bar/Dockerfiles/my_cnt.Dockerfile

Copyright © SUSE 2021

MMTests does not manage the entities where the benchmarks run

— It only knows their IP addresses
— It is not even aware of what they are!

– VMs ?
– Containers ?
– KubeVirt VMIs ?
– Physical Hosts ? [*]

— Can’t start, restart, deploy, etc
– Still useful if wanting to run benchmarks, but MMTets support is not there yet

[*] Should work just fine. But never tested!
28

MMTests
Generic “remote entity” mode

From the host config file:
export MMTESTS_VMS_IP="192.168.122.24 192.168.122.38"
export MMTESTS_VMS="vmi_a vmi_b"

Copyright © SUSE 2021 29

Running Benchmarks in Multiple VMs
We need a bit of a special benchmarking suite

Host

VM 1 VM 2 CPU bench
Iteration 1

CPU bench
Iteration 2

CPU bench
Iteration 3

CPU bench
Iteration 4

CPU bench
Iteration 1

CPU bench
Iteration 2

CPU bench
Iteration 3

CPU bench
Iteration 4

VM1

VM2

time

Just start the benchmarks inside the VMs,

and let them run?

— What’s the performance of CPU bench, running concurrently in 2 VMs?

Copyright © SUSE 2021

Just start the benchmarks inside the VMs,

and let them run?

30

Running Benchmarks in Multiple VMs
We need a bit of a special benchmarking suite

CPU bench
Iteration 1

CPU bench
Iteration 2

CPU bench
Iteration 3

CPU bench
Iteration 4

CPU bench
Iteration 1

CPU bench
Iteration 2

CPU bench
Iteration 3

CPU bench
Iteration 4

VM1

VM2

time ● Iteration 1 in VM1 vs. Nothing in VM2
● Iteration 2 in VM2 vs. Iteration 1 in VM2
● Iteration 3 in VM1 vs. Iteration 2 in VM1
● Iteration 4 in VM1 vs. Iteration 3 in VM2

— What’s the performance of CPU bench running concurrently in 2 VMs?

Host

VM 1 VM 2

Copyright © SUSE 2021

Synchronization of each (iteration of each)

benchmark inside the various VMs:

31

Running Benchmarks in Multiple VMs
We need a bit of a special benchmarking suite

CPU bench
Iteration 1

CPU bench
Iteration 2

CPU bench
Iteration 3

CPU bench
Iteration 4

CPU bench
Iteration 1

CPU bench
Iteration 2

CPU bench
Iteration 3

CPU bench
Iteration 4

VM1

VM2

time

— What’s the performance of CPU bench running concurrently in 2 VMs?

Host

VM 1 VM 2

Copyright © SUSE 2021 32

Running Benchmarks in Multiple VMs
We need a bit of a special benchmarking suite

CPU bench
Iteration 1

CPU bench
Iteration 2

CPU bench
Iteration 3

CPU bench
Iteration 4

CPU bench
Iteration 1

CPU bench
Iteration 2

CPU bench
Iteration 3

CPU bench
Iteration 4

VM1

VM2

time

Synchronization of each (iteration of each)

benchmark inside the various VMs:

— What’s the performance of CPU bench running concurrently in 2 VMs?Iterations start in sync!
● In all VMs
● No matter when the

previous one finished
Host

VM 1 VM 2

Copyright © SUSE 2021

Achieving synchronization:

— Host and the VMs communicate
— Token passing protocol

– VMs do not talk to each other
– All VMs talk to the host

— The host implements the “barriers”
– Before the start of a new benchmark
– Before each iteration of the same benchmark

ASCII block diagram of the protocol

33

MMTests :Synchronized Runs & Iterations
It’s worth checking out the code, even just for this ASCII diagram! :-D

Copyright © SUSE 2021 34

MMTests: Synchronized Runs & Iterations
And this is even prettier… :-P

Host:
run-kvm.sh

VM1:
run-mmtests.sh

VM2:
run-mmtests.sh

VM3:
run-mmtests.sh

Kick
step n

VM1:
step n VM2:

step n

VM3:
step n

VM1:
done n

VM1:
done n

VM1:
done n

Kick
step n+1

VM1:
step
n+1

VM2:
step
n+1

VM3:
step
n+1

Copyright © SUSE 2021 35

MMTests: Synchronized Runs & Iterations
Some 2 VMs Examples

Copyright © SUSE 2021 36

MMTests: Synchronized Runs & Iterations
A 16 VMs Example

Copyright © SUSE 2021 37

MMTests
Documentation

There’s something:

— On GitHub
— In-line help & manpages
— It’s incomplete :-(

– We’re working on it…

Copyright © SUSE 2021 Copyright © SUSE 2021

Building a
 Virtualization CI
 Around MMTests

38

Copyright © SUSE 2021 39

MMTests @ SUSE Kernel Performance Team
Meet Marvin (see Marvin: Automated assistant for development and CI)

Used internally, Linux kernel performance testing. Reports sent to LKML.

— Marvin : reserves machines, manages deployments (with autoyast), copies MMTests
across, executes tests and copies results back

— Bob The Builder : monitors kernel trees, trigger (re)builds
— Johnny Bravo : generating reports
— Manual : developer tool (manual queueing)
— Sentinel : “guards” against regressions
— Impera : bisection
— Janus : For distro comparisons

https://www.youtube.com/watch?v=jOnIQJQzW3s

Copyright © SUSE 2021 40

Another Marvin? Well, different needs, different environment/lab
MMTests-CI

Code available at: https://github.com/dfaggioli/mmtests-ci.

⇒ Still WiP, not sure it’s worth checking it out for now…

— Runs entirely on the test-host. No ext. Controller machine
– Try to avoid reprovisioning the host at each run
– If we want/need that, the host need to “self-reprovision” itself

– Doable in our lab, with internal scripts
— Multiple OSes allowed on the same host, in different partitions

– Cycle through all of them
— Runs periodically

– No change/commit/update triggered. Not yet, at least
– Too many test cases, too few servers :-(

— Code & configuration: all in that git repo
– Checkout the repo, change things like the followings and commit:

– Adding/changing scripts for running tests
– Altering an OS’ test-plan

– At the next run (for that OS) changes will be picked up and be
effective

AMD EPYC 7713
Online CPU(s): 256
Thread(s) per core: 2
Core(s) per socket: 64
Socket(s): 2
NUMA node(s): 2
RAM: 1.2Ti

AMD EPYC 7452
Online CPU(s): 64
Thread(s) per core: 2
Core(s) per socket: 32
Socket(s): 1
NUMA node(s): 1
RAM: 62GB

Running on 2 servers
(not both 100% dedicated
to this yet)

https://github.com/dfaggioli/mmtests-ci

Copyright © SUSE 2021 41

Another Marvin? Kind of. We have different needs + different environment/lab

MMTests-CI

Code available at: https://github.com/dfaggioli/mmtests-ci.

⇒ Still WiP, not sure it’s worth checking it out for now…

— Each OS has a test-plan
– Example of tests: distro RPMs, upstream QEMU, upstream kernel, etc
– Each test can consist of:

– Multiple VM configurations:
– single VM, multi-VMs, different VM sizes, host & guest tuning

– Multiple benchmarks:
– run one after the other, in all the configurations

— Tests (can) have setup phases. Done before starting running
the benchmarks

— It’s possible to reboot the server (even multiple times)
– During setup. E.g., for installing a specific kernel
– Between & during tests the tests. E.g., between benchmarks or

group of benchmarks

AMD EPYC 7713
Online CPU(s): 256
Thread(s) per core: 2
Core(s) per socket: 64
Socket(s): 2
NUMA node(s): 2
RAM: 1.2Ti

AMD EPYC 7452
Online CPU(s): 64
Thread(s) per core: 2
Core(s) per socket: 32
Socket(s): 1
NUMA node(s): 1
RAM: 62GB

Running on 2 servers
(not both 100% dedicated
to this yet)

https://github.com/dfaggioli/mmtests-ci

Copyright © SUSE 2021 42

Our Own Downstream Testing: on-going (with some parts still WiP)

MMTests-CI @ SUSE

E.g., testing the virtualization stack of our currently supported OSes

1. Boot the server into one of our supported OSes, say, SLE 15-SP4
2. Try to updates all the OS packages
3. Did anything change since previous run ?

– E.g., packages receiving maintenance updates & backport
4. If yes, run the benchmarks

– Baremetal (can be useful, for reference)
– In 1 VM, multiple sizes, multiple configurations
– In multiple VMs, multiple sizes, multiple configurations

5. Store results
– Check for regressions

6. Optional: [Re]Provision another OS (say, SLE 15-SP3) in a different partition on the server
7. Boot into that OS

– There, go through all these same steps
– Then reboot into yet another partition/OS
– At some point, one of those other OSes on the server will reboot it into “us”

8. Go back to 1

Copyright © SUSE 2021 43

Upstream Testing: Working on It

MMTests-CI @ QEMU Community

E.g., testing the last two released versions of QEMU

1. Boot the server into openSUSE Tumbleweed
2. Updates all the OS packages
3. Did anything change since previous run ?

– E.g., new versions of some packages (Tumbleweed is rolling!)
4. If yes:

– Download QEMU 7.1.0. Build it. Install it.
– Run the benchmarks:

– In 1 VM, multiple sizes, multiple configurations
– In multiple VMs, multiple sizes, multiple configurations

– Download QEMU 7.0.0. Build it. Install it
– Run the benchmarks:

– In 1 VM, multiple sizes, multiple configurations
– In multiple VMs, multiple sizes, multiple configurations

5. Store results
– Check for regressions

6. Go back to 1

Copyright © SUSE 2021 44

Upstream Testing: Working on It

MMTests-CI @ QEMU Community

E.g., testing the “latest” QEMU git commit:

1. Boot the server into … What ?
2. Updates all the OS packages … Or not ?
3. Has the tip of QEMU git been updated since last run ?
4. If yes:

– Pull QEMU master, with the latest changes. Build it. Install it
– Run the benchmarks:

– In 1 VM, multiple sizes, multiple configurations
– In multiple VMs, multiple sizes, multiple configurations

5. Store results
– Check for regressions

6. Go back to 1

Copyright © SUSE 2021 45

Analyzing results. Triaging and reporting

MMTests-CI @ QEMU Community

Making the results available:

— Full logs and results preserved
— Generate per-{host, OS, test, benchmark} MMTests’ dashboard

– Should be fine to publish them
— Comparison baseline:

– Milestones, if any
– If not, move (for now, manually) it forward each week/month/…, if results are consistent

When a regression is identified:

— Triage and “bisect”
– Manually, for now
– By our team

Reporting to upstream:

— Similar to what Lukáš is doing here
— Manually, done by us: no automatic reports/email, for now

https://lore.kernel.org/qemu-devel/a0f8c750-ed7b-908a-1a29-bf03004579e4@redhat.com/

Copyright © SUSE 2021

Are There Any
 Questions ?

46

Copyright © SUSE 2021

Are There Any
 Questions ?
I Have Some
 Questions !

47

Copyright © SUSE 2021 48

Feedback Wanted! On what baseline shall we test the latest git ?

MMTests-CI @ QEMU Community

“Boot the server into … What ?”
— openSUSE Tumbleweed (or anything that

may have received updates, since the last
run)

– Packages versions on host ⇒ changes
– QEMU codebase ⇒ changes

— GOOD: We always test latest git against an
OS with the most recent software
components (e.g., new kernels!)

— BAD: How do we know which of the two (set
of) changes caused a regression ?

— Frozen (or rarely updated) host OS
– Packages versions on host ⇒ never

change
– QEMU codebase ⇒ changes

—
—
— GOOD: If there’s a difference between two

runs, we know for sure from where it
comes

— BAD: With time, host OS software will
become stale

Copyright © SUSE 2021 49

Choices! Choices! Choices!

MMTests-CI @ QEMU Community

— How many benchmarks ?
– Which ones ?

— How many different configurations ?
– Which ones ?

— How many different VM sizes ?
– Which one

— … … …

Isn’t it just the more, the merrier ? Yes! But:

— The more, the longer it takes:
– Longer time spans between consecutive iterations of the same benchmark
– Harder to identify changes responsible of regressions

— The more, the higher the volume of data produced:
– Time consuming/difficult to analyze

Copyright © SUSE 2021 50

Feedback Wanted! Do the following proposals/ideas make sense ?

MMTests-CI @ QEMU Community

“Run the benchmarks” ⇒ Which ones?

— CPU benchmarks:
– nas-pb, kernbench, sysbench, hackbench

— Memory benchmarks:
– Stream, memcached

— I/O benchmarks:
– fio, iozone, sockperf, netperf

— More complex “workloads”:
– VM Startup time, cyclictest + hackbench, ebizzy

Copyright © SUSE 2021 51

Feedback Wanted! Do the following proposals/ideas make sense ?

MMTests-CI @ QEMU Community

“In 1 VM, multiple sizes, multiple configurations” ⇒ Which ones?

— Sizes:
– # vCPUs = 1, 2, ½ of the host pCPUs, same as the host pCPUs
– RAM = 2GB, ½ of the host RAM, 9/10 of the host RAM

— Configuration:
– Just default
– With IO-threads
– With vCPU & memory pinning + virtual topology
– With PCI-Passthrough / SR-IOV

Copyright © SUSE 2021 52

Feedback Wanted! Do the following proposals/ideas make sense ?

MMTests-CI @ QEMU Community

“In multiple VMs, multiple sizes, multiple configurations” ⇒ Which ones?

— Sizes:
– # vCPUs: 1, 8, 16

— # VMs:
– A few: Tot # vCPUS = ½ of the host pCPUs
– A lot: Tot # of vCPUs = same as the host pCPUs
– Overload: Tot # vCPUS = 1.5 times the # of host pCPUs

Copyright © SUSE 2021 53

Feedback Wanted! Not sure how to deal with host OS != guest OS cases …

MMTests-CI @ QEMU Community

“Did anything change since previous run ?”

— Host changes:
– Easy to check (the CI scripts run on the host)

— Guest changes:
– E.g., I’m on a SLE 15-SP4 host. I want to test a 15-SP3 VM

– No updates for the host since the last test run I did here
– An updated kernel have been released for 15-SP3, since the last run
– But the VM is off, until I actually decide to start the test… So

how do I figure that out ?

⇒ Boot all the VMs and check for updates inside of them for deciding whether to rerun ?
 Seems the proper solution, but it’s cumbersome and complex

⇒ Somehow setup alerts for (potential) guest updates. Use them to force a test run
 Doable… With a lot of test specific alerts/trigger (random OS update available, upstream kernel available, etc)

⇒ Once in a while, run the test anyway, even if it would seem unnecessary ?
 Easy, but potentially wasteful
 How long is “a while” ?

⇒ Only do “homogenous runs”, i.e., host OS == (all) gues(s) OS(es)

Copyright © SUSE 2021 54

Feedback Wanted! Some more technical quirks about some of the benchmarks

MMTests-CI @ QEMU Community

Measuring a VM’s boot time ⇒ How to do properly ?

— From virsh start to login: ? But it includes guest kernel boot time
— From git start to GRUB ? Nice but tricky to measure
— From virsh start to prompt of a special (small) direct kernel + initrd boot ? ⇐

Measuring QEMU’s memory overhead

— What to sample? Which thread’s RSS ?
— When to sample? Just once at the beginning ? Does it changes over time ?

Heterogenous configurations:

— Host OS != guest OS(es) ⇒ Not planned right now
— Different workload in each VM ⇒ Not planned right now

Copyright © SUSE 2021 55

Feedback Wanted! Results aggregation in case of multiple VMs

MMTests-CI @ QEMU Community

— Run STREAM in 4 VMs
– Result is 4 results !

— Run STREAM in 16
– Result is 16 results !

— What’s the result of this STREAM run with 4 VMS ?
— How do we compare:

“Run in 4 VMs today” VS “Run in 4 VMs last week” ?
– We need a single number / set of stats
– Max, Min, Avg, Std: of the 4 per-VM results

⇒ Copy = AVG(copy[vm1], copy[vm2],
 copy[vm3], copy[vm4])
⇒ Std should give an indication of the fairness,
 at host scheduling level
⇒ Min & Max could give indications about latency

Copyright © SUSE 2021

© 2020 SUSE LLC. All Rights Reserved. SUSE
and the SUSE logo are registered trademarks
of SUSE LLC in the United States and other
countries. All third-party trademarks are the
property of their respective owners.

For more information, contact SUSE at:

+1 800 796 3700 (U.S./Canada)

Maxfeldstrasse 5

90409 Nuremberg

www.suse.com

Thank You!

Any Questions?

56

Copyright © SUSE 2021

Beware that:

— must run as root
— It changes your system

– Apply policies (e.g., cpufreq governor),
install packages

– Some are rolled back. Some aren’t!
— It downloads the benchmarks from Internet

– While running as root
– Can this be trusted ?
– (Workaround: setup a mirror and vet content)

Accepting an advice:

— Use it on “cattle” test machines, not on “pet” workstations

57

Disclaimer
When using MMTests for day-to-day development

