NVMe Emulation
Performance Optimization

Jinhao Fan <fanjinhao21s@ict.ac.cn> L E':'E'N%H%ﬁ
Chinese Academy of Sciences

* GSoC contributor for “NVMe Emulation Performance
Optimization”

« Mentors: Klaus Jensen (Samsung), Keith Busch
(Meta)
— With help from Stefan Hajnoczi and others

« Second-year graduate student at Institute of Computing
Technology, Chinese Academy of Science (ICT, CAS)

— Doing research on storage systems
- Eager to learn how real systems works, and how they are
built L JLinux

FOUNDATION

QEMU NVMe — Current Status

« Used by developers and researcher to experiment

with new features

« Performance surprisingly low
— Maximum IOPS: 30K

— Unable to emulate super fast NVMe devices nowadays

* Our goal: Make QEMU NVMe’s performance

comparable to virtio-blk

QDb 1 4 16 64
nvme 31 30 30 30
virtio-blk 59 185 260 256

Unit: KIOPS

Test setup: FIO 4KB random reads
Host: 96-core Xeon Gold 6248R
@ 3GHZ, 256GB DRAM, Ubuntu

22.04 with Linux 5.15.0-46
THE

L LINUX

FOUNDATION

What did we do?

* Reduced MMIQO’s with shadow doorbell buffer
* Lightweight MMIO with ioeventfd

* Dedicated emulation thread with iothread
Minimal latency with polling

Thread-safe eventfd-based interrupts

NVMe Primer

* NVMe uses circular lock-free queues for
submissions and completions
— tail incremented when producing to the gqueue
— head incremented when consuming from the queue

 Host informs the device about new entries In the
gueue by “ringing the doorbell”

— A"doorbell” is the common name for a write-only
memory-mapped I/O register
e

NVMe Primer

 An NVMe command involves two db writes
— One for SQ tail doorbell, one for CQ head doorbell

* Applications tend to ring db frequently for latency
* Quite a lot of overhead due to “trap-emulate”

“Ring doorbell” Doorbell Registers
Mi
Write ﬂ
QEMU_MMI_O han.dler Processes SQ/CQ entry
\ sets up timer in main loop
THE

L LINUX

FOUNDATION

Guest VM vCPU Thread Main Loop Thread

Shadow Doorbell Buffer

* A para-virtualization feature similar to
VIRTIO_F EVENT IDX, introduced in NVMe 1.3

« The host registers two buffers that mirror the

doorbell registers as perceived by the host and
controller respectively

— “doorbell buffer”, updated by the host
— “event index buffer”, updated by the controller

* No MMIO when writing these buffers

THE
L I LINUX
FOUNDATION

Performance After Shadow DB

(“Ring doorbell”
only when shadow db
equals to Eventldx

Doorbell Registers

bl bl L Lt LTl QEMU MMIO handler

______________ sets up timer in main loop Processes SQ/CQ entry
Guest VM vCPU Thread Main Loop Thread
Qb 4 64
nvme 31 30 30 30
+shadow db 35 121 176 153
virtio-blk 59 185 260 256 .

LINUX

L FOUNDATION

* Even with shadow doorbell buffers MMIO is
required
— Whenever the device is idle (I.e. event index is equal
to shadow doorbell value)
* The ioeventfd mechanism allows light-weight
VMEXITs

— VMEXIT handler writes to an eventfd and resume
running guest code, without going back to QEMU
e

 loeventfd only tells that an MMIO region is written,
but not what exact value Is written

* Qur solution: register ioeventfd on doorbell
registers, and check shadow doorbell in the event
nandler

(“Ring doorbell”
only when shadow db
equals to Eventldx

Doorbell Registers

4

KVM signals eventfd Checks shadow db,
without returning to QEMU processes SQ/CQ entry

THE

Guest VM vCPU Thread Main Loop Thread L. JEINUX

« Performance looks good, already close to virtio-blk
» But that is not enough

— 10 emulation Iin a dedicated thread

— Polling for low-latency devices

QD 1 4 16 64
nvme 31 30 30 30
+shadow db 35 121 176 153
+ioeventfd 41 133 258 313
virtio-blk 59 185 260 256

L

THE

LINUX

FOUNDATION

|OThread

* Bottleneck of current architecture: the main loop thread

guest 'lg irocessg —_— Nvme0 Single Main loop thread:
uest rocess I > Nvme1l 0O .
verwhelmed :
Guest 10 Process 2 | I - Nvme2 (
e Nvme3
Guest IO Process 3 | = f
Guest 10 Process 0 | e |IOThread 0
Guest 10 Process 1 | e |OThread 1 I\/Iultlple IOThreads:
Guest |0 Process 2 | e |OThread 2 One thread per device! :)
Guest 10 Process 3 | e |IOThread 3 LINUX

L FOUNDATION

Thread-safe IRQ Delivery

 QEMU'’s default interrupt injection emulation is
not thread safe.

* This was not a problem when all devices were
emulated in the main loop thread

* But challenges arise when emulating in a
separate iothread

THE
L LINUX
FOUNDATION

Thread-safe IRQ Delivery

* Two eventfd-based ways to get around thread
safety problems in QEMU interrupt emulation

 When irgfd is available (interrupt is MSI-X and
KVM supports irqfd)
— Register a virtual irg in KVM and let KVM assert the
Interrupt when the irgfd is signalled, bypassing QEMU
 When irgfd is unavailable

— Register an event notifier to always (de)assert interrupts in
main loop thread
L] tinux

Performance After irgfd

* Irgfd Is not necessarily faster than KVM ioctl
Interrupt injection although it bypasses QEMU

QD 1 4 16 64
nvme 31 30 30 30
+shadow db 35 121 176 153
+ioeventfd 41 133 258 313
+irqfd 41 136 242 338
virtio-blk 59 185 260 256

THE
L LINUX
FOUNDATION

|OThread

 NVMe Admin Queue

— Often involve memory region transactions
— Emulated in main loop thread with BQL held

* NVMe IO Queues
— Emulated in IOThread to get predictable performance

|OThread
(“Ring doorbell” .
only when shadow db Doorbell Registers Processes 10 Queue entry
equals to Eventldx

4

KVM signals eventfd Processes Admin Queue entry
without returning to QEMU

——————————————] THE

L LINUX

FOUNDATION

Guest VM vCPU Thread Main Loop Thread

|OThread

* With AioContext, changing emulation thread is

easy!

— event_notifier_set _handler -> aio_set_event_notifier
— timer_new -> alo_timer_new

— gemu_bh_new -> alo_bh_new

 Remember to hook up the correct AioContext !

THE
L I LINUX
FOUNDATION

Performance After IOThread

« Slight improvement at low QD because IOThread has a

lightweight event loop

* IOPS grow linearly with number of devices

QD 1 4 16 64
nvme 31 30 30 30
+shadow db 35 121 176 153
+ioeventfd 41 133 258 313
+irqfd 41 136 242 338
+iothread 53 155 245 309
virtio-blk 59 185 260 256

wn
o

Total KIO

1500

1250 ~
1000 A
750 A
500 A
250 A
0=

—&— main loop
iothread

A,/‘ ‘
1 2 3
drives

L

THE

LINUX

FOUNDATION

Polling

 “Poll for submission” in order to

— Start command processing as soon as SQE becomes
available
* No extra latency from MMIO and ioeventfd processing
— (In theory) No need to ring doorbells anymore
« Potentially completely eliminate MMIO

|IOThread
(“Ring doorbell” .
suppressed for Doorbell Registers Polls for 10 Queue entry
10 queues

4

KVM signals eventfd
without returning to QEMU

Processes Admin Queue entry

THE

L LINUX

FOUNDATION

Guest VM vCPU Thread Main Loop Thread

In The End

« ~700 LOC change

« Performance on par with virtio-blk under both polling

and non-polling setup

QD 1 4 16 64

nvme 53 155 245 309
virtio-blk 59 185 260 256
nvme+polling 123 165 189 191
virtio-blk+polling 88 212 210 213

Still investigating
why polling has
worse I0PS at high
Qb

THE

L LINUX

FOUNDATION

| essons Learned

* The source (hw/virtio*) is basically the
documentation for this stuff

— You have to know that you need an eventfd-based
Interrupt mechanism for thread safety

— You have to know that you should hook up the
MSI-X vector notifiers for irgfd-based interrupts to
work correctly

THE
L I LINUX
FOUNDATION

| essons Learned

* Want to add iothread to your device?

— 1) Are my mmio handlers safe?
« Make sure you schedule work on the right thread

— 2) Are my interrupt handlers thread safe?

 Use an eventfd notifier to schedule the handler on a
specific thread

THE

L LINUX

FOUNDATION

A Wild NVMe Spec Violation Appeared

» Specification requires doorbell buffers be used
on all queues, Including the Admin Queue

— But... No existing drivers (Linux, SPDK) or devices
(SPDK’s vfio-user) uses it on the Admin Queue

— Can not be fixed in drivers

Figure 164: Doorbell Buffer Config — Shadow Doorbell and Eventldx

Start End 2
(Offset in Buffer)"" 2 | (Offset in Buffer)!> 2 | Description

00h 03h Submission Queue 0 Tail Doorbell or Eventldx (Admin)
(4 <<0(?RP+E()18TRD)) (4 <<0§R|: E()‘ISTRD)) Completion Queue 0 Head Doorbell or Eventldx (Admin)
(4< <0((L‘)R; IZ()28TRD)) (4< <0§R; IZ()ZSTRD)) Submission Queue 1 Tail Doorbell or Eventldx

00h +(3* 03h+ (3~ Completion Queue 1 Head Doorbell or Eventldx 't
(4 << CAP.DSTRD)) | (4 << CAP.DSTRD)) L IBINI.TIg(
FOUNDATION

The “fix” (Keith Busch)

 Qverwrite the shadow doorbell buffer value
with the doorbell register value in the doorbell
mmio handler

— Safe (in vmexit/trap context)

* Works for both compliant and non-compliant
host drivers

 Drivers will probably continue to be non-
compliant in this regard

THE
L LINUX
FOUNDATION

Future Work

» Making hw/nvme a viable virtio-blk alternative
for cloud deployments
— Needs live migration support

— Split off a version of the controller without all the
faked features (Simple Copy, Zoned Namespace
emulation, etc.)

— Security audit

Future Work

» Additional iothread optimizations

— An iothread per namespace?

« Submission queues are not exclusive to namespaces, still
need a thread for those

— An iothread per submission queue?

THE

L LINUX

FOUNDATION

Shadow doorbell

— hw/nvme: Add shadow doorbell buffer support

Use ioeventfd to handle doorbell updates

support irg (de)assertion with eventfd

use KVM irgfd when available

add iothread support

* loeventfd

— hw/nvme:
* lIrgfd

— hw/nvme:

— hw/nvme:
 |0OThread

— hw/nvme:
« Polling

— hw/nvme:

add polling support

THE

L LINUX

FOUNDATION

https://lore.kernel.org/qemu-devel/20220616123408.3306055-1-fanjinhao21s@ict.ac.cn/#r
https://lore.kernel.org/qemu-devel/20220705142403.101539-1-fanjinhao21s@ict.ac.cn/
https://lore.kernel.org/qemu-devel/20220827091258.3589230-2-fanjinhao21s@ict.ac.cn/
https://lore.kernel.org/qemu-devel/20220827091258.3589230-3-fanjinhao21s@ict.ac.cn/
https://lore.kernel.org/qemu-devel/20220827091258.3589230-4-fanjinhao21s@ict.ac.cn/
https://lore.kernel.org/qemu-devel/20220827091258.3589230-5-fanjinhao21s@ict.ac.cn/

