
Jinhao Fan <fanjinhao21s@ict.ac.cn>

Chinese Academy of Sciences

NVMe Emulation

Performance Optimization

About me

• GSoC contributor for “NVMe Emulation Performance
Optimization”

• Mentors: Klaus Jensen (Samsung), Keith Busch
(Meta)
– With help from Stefan Hajnoczi and others

• Second-year graduate student at Institute of Computing
Technology, Chinese Academy of Science (ICT, CAS)

– Doing research on storage systems

• Eager to learn how real systems works, and how they are
built

QEMU NVMe – Current Status

• Used by developers and researcher to experiment
with new features

• Performance surprisingly low
– Maximum IOPS: 30K

– Unable to emulate super fast NVMe devices nowadays

• Our goal: Make QEMU NVMe’s performance
comparable to virtio-blk

QD 1 4 16 64

nvme 31 30 30 30

virtio-blk 59 185 260 256

Unit: KIOPS
Test setup: FIO 4KB random reads
Host: 96-core Xeon Gold 6248R
@ 3GHZ, 256GB DRAM, Ubuntu
22.04 with Linux 5.15.0-46

What did we do?

• Reduced MMIO’s with shadow doorbell buffer

• Lightweight MMIO with ioeventfd

• Dedicated emulation thread with iothread

• Minimal latency with polling

• Thread-safe eventfd-based interrupts

NVMe Primer

• NVMe uses circular lock-free queues for
submissions and completions
– tail incremented when producing to the queue

– head incremented when consuming from the queue

• Host informs the device about new entries in the
queue by “ringing the doorbell”
– A ”doorbell” is the common name for a write-only

memory-mapped I/O register

NVMe Primer

• An NVMe command involves two db writes

– One for SQ tail doorbell, one for CQ head doorbell

• Applications tend to ring db frequently for latency

• Quite a lot of overhead due to “trap-emulate”

“Ring doorbell”
MMIO
Write

Doorbell Registers

Guest VM vCPU Thread Main Loop Thread

QEMU MMIO handler
sets up timer in main loop

Processes SQ/CQ entry

Shadow Doorbell Buffer

• A para-virtualization feature similar to
VIRTIO_F_EVENT_IDX, introduced in NVMe 1.3

• The host registers two buffers that mirror the
doorbell registers as perceived by the host and
controller respectively
– “doorbell buffer”, updated by the host

– “event index buffer”, updated by the controller

• No MMIO when writing these buffers

Performance After Shadow DB

QD 1 4 16 64

nvme 31 30 30 30

+shadow db 35 121 176 153

virtio-blk 59 185 260 256

Shadow Doorbell

“Ring doorbell”
only when shadow db

equals to EventIdx MMIO
Write

Doorbell Registers

Guest VM vCPU Thread Main Loop Thread

Event Index
QEMU MMIO handler

sets up timer in main loop
Processes SQ/CQ entry

ioeventfd

• Even with shadow doorbell buffers MMIO is
required
– Whenever the device is idle (i.e. event index is equal

to shadow doorbell value)

• The ioeventfd mechanism allows light-weight
VMEXITs
– VMEXIT handler writes to an eventfd and resume

running guest code, without going back to QEMU

ioeventfd

• ioeventfd only tells that an MMIO region is written,
but not what exact value is written

• Our solution: register ioeventfd on doorbell
registers, and check shadow doorbell in the event
handler

Shadow Doorbell

“Ring doorbell”
only when shadow db

equals to EventIdx MMIO
Write

Doorbell Registers

Guest VM vCPU Thread Main Loop Thread

Event Index
KVM signals eventfd

without returning to QEMU

Checks shadow db,
processes SQ/CQ entry

ioeventfd

• Performance looks good, already close to virtio-blk

• But that is not enough
– IO emulation in a dedicated thread

– Polling for low-latency devices

QD 1 4 16 64

nvme 31 30 30 30

+shadow db 35 121 176 153

+ioeventfd 41 133 258 313

virtio-blk 59 185 260 256

IOThread

• Bottleneck of current architecture: the main loop thread

Guest IO Process 0
Nvme0
Nvme1
Nvme2
Nvme3

Multiple IOThreads:
One thread per device! :)

Guest IO Process 1

Guest IO Process 2

Guest IO Process 3

Guest IO Process 0

Guest IO Process 1

Guest IO Process 2

Guest IO Process 3

IOThread 0

IOThread 1

IOThread 2

IOThread 3

Single Main loop thread:
Overwhelmed :(

Thread-safe IRQ Delivery

• QEMU’s default interrupt injection emulation is

not thread safe.

• This was not a problem when all devices were

emulated in the main loop thread

• But challenges arise when emulating in a

separate iothread

Thread-safe IRQ Delivery

• Two eventfd-based ways to get around thread
safety problems in QEMU interrupt emulation

• When irqfd is available (interrupt is MSI-X and
KVM supports irqfd)
– Register a virtual irq in KVM and let KVM assert the

interrupt when the irqfd is signalled, bypassing QEMU

• When irqfd is unavailable
– Register an event notifier to always (de)assert interrupts in

main loop thread

Performance After irqfd

• irqfd is not necessarily faster than KVM ioctl

interrupt injection although it bypasses QEMU

QD 1 4 16 64

nvme 31 30 30 30

+shadow db 35 121 176 153

+ioeventfd 41 133 258 313

+irqfd 41 136 242 338

virtio-blk 59 185 260 256

IOThread

• NVMe Admin Queue
– Often involve memory region transactions

– Emulated in main loop thread with BQL held

• NVMe IO Queues
– Emulated in IOThread to get predictable performance

Shadow Doorbell

“Ring doorbell”
only when shadow db

equals to EventIdx MMIO
Write

Doorbell Registers

Guest VM vCPU Thread Main Loop Thread

Event Index
KVM signals eventfd

without returning to QEMU
Processes Admin Queue entry

IOThread

Processes IO Queue entry

IOThread

• With AioContext, changing emulation thread is

easy!

– event_notifier_set_handler -> aio_set_event_notifier

– timer_new -> aio_timer_new

– qemu_bh_new -> aio_bh_new

• Remember to hook up the correct AioContext !

Performance After IOThread

QD 1 4 16 64

nvme 31 30 30 30

+shadow db 35 121 176 153

+ioeventfd 41 133 258 313

+irqfd 41 136 242 338

+iothread 53 155 245 309

virtio-blk 59 185 260 256

• Slight improvement at low QD because IOThread has a

lightweight event loop

• IOPS grow linearly with number of devices

Polling

• “Poll for submission” in order to
– Start command processing as soon as SQE becomes

available
• No extra latency from MMIO and ioeventfd processing

– (In theory) No need to ring doorbells anymore
• Potentially completely eliminate MMIO

Shadow Doorbell

“Ring doorbell”
suppressed for

IO queues MMIO
Write

Doorbell Registers

Guest VM vCPU Thread Main Loop Thread

Event Index
KVM signals eventfd

without returning to QEMU
Processes Admin Queue entry

IOThread

Polls for IO Queue entry

In The End

• ~700 LOC change

• Performance on par with virtio-blk under both polling

and non-polling setup

QD 1 4 16 64

nvme 53 155 245 309

virtio-blk 59 185 260 256

nvme+polling 123 165 189 191

virtio-blk+polling 88 212 210 213

Still investigating
why polling has
worse IOPS at high
QD

Lessons Learned

• The source (hw/virtio*) is basically the

documentation for this stuff

– You have to know that you need an eventfd-based

interrupt mechanism for thread safety

– You have to know that you should hook up the

MSI-X vector notifiers for irqfd-based interrupts to

work correctly

Lessons Learned

• Want to add iothread to your device?

– 1) Are my mmio handlers safe?

• Make sure you schedule work on the right thread

– 2) Are my interrupt handlers thread safe?

• Use an eventfd notifier to schedule the handler on a

specific thread

A Wild NVMe Spec Violation Appeared

• Specification requires doorbell buffers be used
on all queues, including the Admin Queue
– But... No existing drivers (Linux, SPDK) or devices

(SPDK’s vfio-user) uses it on the Admin Queue

– Can not be fixed in drivers

The “fix” (Keith Busch)

• Overwrite the shadow doorbell buffer value
with the doorbell register value in the doorbell
mmio handler
– Safe (in vmexit/trap context)

• Works for both compliant and non-compliant
host drivers

• Drivers will probably continue to be non-
compliant in this regard

Future Work

• Making hw/nvme a viable virtio-blk alternative

for cloud deployments

– Needs live migration support

– Split off a version of the controller without all the

faked features (Simple Copy, Zoned Namespace

emulation, etc.)

– Security audit

Future Work

• Additional iothread optimizations

– An iothread per namespace?

• Submission queues are not exclusive to namespaces, still

need a thread for those

– An iothread per submission queue?

Patches

• Shadow doorbell
– hw/nvme: Add shadow doorbell buffer support

• Ioeventfd
– hw/nvme: Use ioeventfd to handle doorbell updates

• Irqfd
– hw/nvme: support irq (de)assertion with eventfd

– hw/nvme: use KVM irqfd when available

• IOThread
– hw/nvme: add iothread support

• Polling
– hw/nvme: add polling support

https://lore.kernel.org/qemu-devel/20220616123408.3306055-1-fanjinhao21s@ict.ac.cn/#r
https://lore.kernel.org/qemu-devel/20220705142403.101539-1-fanjinhao21s@ict.ac.cn/
https://lore.kernel.org/qemu-devel/20220827091258.3589230-2-fanjinhao21s@ict.ac.cn/
https://lore.kernel.org/qemu-devel/20220827091258.3589230-3-fanjinhao21s@ict.ac.cn/
https://lore.kernel.org/qemu-devel/20220827091258.3589230-4-fanjinhao21s@ict.ac.cn/
https://lore.kernel.org/qemu-devel/20220827091258.3589230-5-fanjinhao21s@ict.ac.cn/

