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Google Cloud has recently announced the T2A family of VMs, the first 
product built with the Arm architecture

● Ampere Altra SoC
● KVM-based virtualization stack
● Close-to-upstream “Icebreaker” kernel (presented at OSS 2021)

Introduction

https://cloud.google.com/blog/products/compute/tau-t2a-is-first-compute-engine-vm-on-an-arm-chip
https://www.youtube.com/watch?v=tryyzWATpaU&list=PLbzoR-pLrL6q8QMGJ4dFnqejkHDm76kJV&index=69


Dirty Tracking on Arm

● MMU lock contention was the bounding issue
● Write protection is the name of the game

○ No feature like Intel’s PML
● High frequency of stage-2 aborts
● Dirty state tracked at PTE granularity



Test Workload

Theoretical worst case scenario:
● t2a-standard-48 (48 vCPUs, 192 GiB RAM)
● Backed with 2M HugeTLB
● Guest userspace strides memory with 100% 

write accesses
● After some time VMM enables dirty logging



“Live” Migration

● >99% performance 
degradation when dirty 
logging is enabled

● Guest starved of CPU for 
nearly 30 seconds



Here we go again…

At first glance, the problems are similar to x86:
● MMU guarded with a spinlock
● When dirty logging, blocks are split into tables lazily

We went about fixing the problem the same way:
● 5.18: Take the read lock to write-unprotect a page
● RFC: Take the read lock for the other stage-2 faults



Signs of life

● Improvement over baseline
● Still, significant 

performance degradation 
at the beginning of dirty 
logging



Where else are we serializing?

● Inspecting some traces, it appears a lot of time is spent in 
__kvm_tlb_flush_vmid_ipa()

● Called in the middle of page split because of break-before-make
● No software locking, so what gives?



Break-before-make

● Arm architecture more prescriptive than others (x86) on how software 
manipulates page tables

● Software must first make an invalid PTE (break) visible to hardware before 
another valid PTE (make)

● Prevents TLB conflicts

● Required for hugepage splitting



Break-before-make (cont’d)

Block

WRITE_ONCE(*ptep, 0);

dsb(ishst);

tlbi(ipas2e1is, ipa);

dsb(ish);

tlbi(vmalle1is);

dsb(ish);

isb();

WRITE_ONCE(*ptep, new);



Break-before-make (cont’d)

0x000…000

WRITE_ONCE(*ptep, 0);

dsb(ishst);

tlbi(ipas2e1is, ipa);

dsb(ish);

tlbi(vmalle1is);

dsb(ish);

isb();

WRITE_ONCE(*ptep, new);



Break-before-make (cont’d)

0x000…000

WRITE_ONCE(*ptep, 0);

dsb(ishst);

tlbi(ipas2e1is, ipa);

dsb(ish);

tlbi(vmalle1is);

dsb(ish);

isb();

WRITE_ONCE(*ptep, new);



Break-before-make (cont’d)

0x000…000

WRITE_ONCE(*ptep, 0);

dsb(ishst);

tlbi(ipas2e1is, ipa);

dsb(ish);

tlbi(vmalle1is);

dsb(ish);

isb();

WRITE_ONCE(*ptep, new);



Break-before-make (cont’d)

Table

WRITE_ONCE(*ptep, 0);

dsb(ishst);

tlbi(ipas2e1is, ipa);

dsb(ish);

tlbi(vmalle1is);

dsb(ish);

isb();

WRITE_ONCE(*ptep, new);

Page



Side effects of break-before-make

● TLB invalidations are broadcasted to Inner-Shareable domain
● DSB awaits the completion of all in flight invalidations on the 

Inner-Shareable domain
● Observation: on a loaded system, the sequence can take several 

milliseconds to complete
● Result: unacceptable vCPU fault latency



What if I elide break-before-make?

● Based on the implementation:
○ TLB conflict abort
○ TLB returns either of the duplicate entries
○ TLB returns an amalgamation of both entries

● Open season for all kinds of interesting failures, such as breaking:
○ Coherency
○ Single-copy atomicity
○ Ordering



● Eliminate unnecessary broadcasting of TLB invalidations
○ Relaxing write permissions falls outside the scope of 

break-before-make
○ Instead, invalidate only within the Non-Shareable domain (local)

● Spread out the necessary TLB invalidations over a longer period of time
● Solution: extend the KVM_CLEAR_DIRTY_LOG ioctl to split hugepages

○ Eager page splitting, with the ability to ratelimit in userspace

Mitigating in software



End result

● Page splitting throttled to 
minimize 
break-before-make 
overhead

● Gradual (and smaller) 
degradation in guest 
performance 



● Problem only gets worse with more cores in a system
○ Interconnect implementations need TLB snoop filters

● FEAT_TLBIRANGE - Software can target a range of memory with a single 
invalidation; allows batching without dropping all context

● FEAT_BBM=2 - Relaxes the break-before-make requirements, allowing 
hugepage split/collapse without the sequence
○ Snag: software needs to deal with TLB conflict aborts. Only option is 

to flush everything when the abort occurs.

Outlook
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Questions?


