AMD

Open-Source QEMU and RTL Co-simulation

Edgar E. Iglesias

1

Agenda

- QEMU at AMD/Xilinx
- Emulation technologies
- What, How and why Co-simulation?
- DARPA, POSH and Xilinx
- Co-simulation setups
- Live demo

Virtual Platform for SW developers

 Open-Source @Xilinx from 2009 Transaction level Debug & Profiling Co-simulation Value 	Scalable distribution & cost model, Popular in Open-Source community MicroBlaze, Power PC, ARM (Zynq, Zynq MPSoC, Versal), x86 Fast but not cycle accurate, Linux boot 2sec to user-space, 2min to prompt GDB/XSDB, traces, code-coverage and error-injection (-ve testing) SystemC/TLM-2, RTL and Hybrid Shift left (early SW development), Flexibility, Speed, Cost
Users	
Internal	BootROM, System Software, SVT
External	Petalinux, Vitis HW-Emulation, GitHub (Roll your own)
External	
DARPA/POSHCustomers/Vendors	AMD/Xilinx chosen for Open-Source QEMU Co-simulation efforts X (PetaLinux), Y (Github) and Z (Vitis)

Emulation, technologies and trade-offs

QEMU

Very large designs Fast Ghz speed Low visibility Low accuracy Virtual model

SystemC/TLM

Very large designs Fast 100 - 500Mhz Low visibility Low accuracy Virtual model

FPGA Prototyping

Small – Med designs 1 - 200 Mhz Medium visibility High accuracy RTL

HW Emulation

Large designs Slow 1 Mhz High visibility High accuracy RTL **RTL** Simulation

Very large designs Slow High visibility High accuracy RTL

What is Co-simulation?

Why Co-simulation?

Why Co-simulation?

How is bridging done?

How is bridging done?

How is bridging done?

Open Source Mixed Simulation Environment (DARPA/POSH) LibSystemCTLM-SoC

https://github.com/Xilinx/libsystemctlm-soc

Based on Open-Source Projects

Phase 1a

Phase 1b

POSH – Xilinx – Libsystemctlm-soc

- TLM simulation bridges, protocol checkers and traffic generators
 - APB, AXI (3, 4, Lite, Stream), ACE, CHI, CCIX, CXS, PCIe, XGMII, Native, VFIO
- TLM RTL/FPGA prototyping bridges
 - AXI (3, 4, Lite), ACE, CHI, CCIX, PCIe
- GDB + GTKWave debugging view
- SoC Emulator auto-stiching from IP-XACT (Kactus2, QEMU, SystemC, Verilator, Pysimgen)

TLM2 bridges RTL simulation

₁₃ **13**

QEMU heterogeneous

TLM2 bridges FPGA Prototyping

TLM2 bridges Emulator #1

Pros: Fast, sort of "Vendor neutral" Cons: Not debug-portable, Licensing AXI VIP

TLM2 bridges Emulator #2

Pros: Vendor neutral, debug-portable Cons: Slow, Licensing AXI VIP

LMAC demo

LeWiz Communications Ethernet MAC Core2 10G/5G/2.5G/1G

https://github.com/lewiz-support/LMAC_CORE2

[AMD Public]

Thank you

[AMD Public]

#