
Liang Deng
System Technologies and Engineering (STE) team

KVM-devirt
Extending KVM to a Zero-overhead Partition Hypervisor

KVM forum 2022

Motivation

Genoa： 384 cores

Icelake： 224 cores

Trends: the core number of a single server increases rapidly

Problems
Scalability: Linux kernel encounters many-core scalability bottlenecks, e.g., lock
contentions in file system, network stack, scheduler, memory management and so on.

Fault isolation: More applications run on a single server. If one application crashes
kernel, the whole sever crashes.

Kernel customization: a single kernel is hard to fulfill applications’ custom requirements
(e.g., kernel configuration, kernel boot parameters)

Partition the server using current KVM Virtualization
Separate guest kernels

Virtualization overhead is non-trivial

KVM Virtualization Overhead

• Timer virtualization

• IPI virtualization

• virtio notifications

• HLT and MWAIT instructions

• CPUID instruction

• Host interrupt

1. VM exits 3. Additional address translations

• Stage-2 address translations (EPT or NPT)

• DMA remap translation on IOMMU page tables

2. Posted interrupt

• Although VM exit can be eliminated

• Overhead is still non-trivial due to complex hardware path

KVM-devirt
• Interrupt passthrough

• IPI passthrough

• Timer passthrough

• Memory de-virtualization

• DMA de-virtualization

• Virtio notification passthrough

• Remove all VM exits after guest
kernel initialization phase

• Remove all additional address
translations

• Support both Intel and AMD
platforms

Interrupt Passthrough
• Posted interrupt is not used due to its extra overhead

in hardware path

• Pass local APIC registers (IRR, ISR, EOI) directly to
the BM. Use separate host and guest interrupt
vectors to avoid mixture.

• Guest interrupts arrived on guest cores are
configured as IRQs which are directly delivered to
non-root mode.

• Host interrupts arrived on guest cores are configured
as NMIs which cause VM exits.

• Re-trigger a self-IPI (IRQ) in host NMI handler to solve
IRQ-mask issue.

• Send self-IPIs at VM entry to inject virtual guest
interrupts of emulated devices

 Interrupt Remap

• Interrupt posting capability is not used in
IOMMU interrupt remapping.

• VFIO fills in the IRTE with guest vector of
guest device interrupt and APIC_ID of the
physical core where BM runs.

• When BM changes the virq-vcpu binding
relations or guest vectors, VFIO updates the
IRTE with the new value.

IPI Passthrough
• KVM maps a vAPIC_ID-to-pAPIC_ID

mapping into BM at BM startup and updates
it whenever a VCPU thread is migrated to a
new physical core.

• At the sending core, BM maps vAPIC_ID of
target VCPU to pAPIC_ID, and directly
accesses ICR to send IPI with guest vector.

• At the receiving core, IPI (IRQ) is directly
delivered to BM without VM exits.

Timer Passthrough

• BM uses physical Local APIC timer and
Host Linux uses broadcast timer.

• KVM maps the TSC offset value into BM and
updates it whenever modified.

• At lapic_next_event, BM subtract TSC offset
value from guest TSC deadline and set it to
MSR_TSCDEADLINE

• On LAPIC timer expiration, timer interrupt
(IRQ) is directly delivered to BM without VM
exits.

Memory De-virtualization
• BM only uses stage-1 page table, stage-2 (EPT

or NPT) is disabled.

• At BM startup, KVM statically pins BM’s guest
memory, initializes both gfn-to-pfn and pfn-to-gfn
tables and maps them into BM.

• When BM writes its own guest page tables (with
set_pgd/set_pud/set_pmd/set_pte PV interfaces),
it translates the gfn into pfn. Thus guest page
tables directly use pfns.

• The hardware MMU directly uses BM’s guest
page tables

• When BM reads guest page tables (with pgd_val/
pud_val/pmd_val/pte_val PV interfaces), it
translates the pfn into gfn.

• Use a hypercall in guest page fault handler to
emulate a MMIO trap.

DMA De-virtualization

• At BM startup, KVM statically pins BM’s guest
memory and maps both gfn-to-pfn and pfn-to-
gfn mappings into BM.

• When the passthrough device driver invokes
dma_map to map dma buffer before issuing a
dma request, it first relies on the gfn-to-pfn
mappings to translate the gpa in the request to
hpa. Thus DMA remap is not required.

• The VFIO in host configures the IOMMU as
passthrough mode to disable DMA remap
address translations.

• Additional modifications to the device driver is
required to ensure that the dma_map is invoked
as PAGE_SIZE granularity.

Virtio Notification Passthrough

• When virtio frontend in BM sends notification to
backend, it directly accesses the ICR to send
an IPI (with host vector) to the host core,
without any VM exit.

• When backend sends notification to frontend in
BM, it sends IPI (with guest vector) to the guest
core. The IPI (configured as IRQ) is then directly
delivered to BM based on the interrupt
passthrough.

Other Optimizations to Remove VM exits
• CPU isolation and no-hz full

• Handle cpuid in BM with dynamic binary rewriting

• The handling of some host IPIs to guest cores are
delayed to next VM exit.

• HLT and MWAIT instruction passthrough

Micro-benchmark Result for IPI latency

Intel result AMD result

Micro-benchmark Result for Timer latency

Intel result AMD result

Micro-benchmark Result for Cache Line Prefetch

Cache Line prefetch latency

 (lower is better)

Native Host 9.32

BM 9.35

VM with 1GB-size EPT 11.1

VM with 4KB-size EPT 14.3

Real-world Application Result (BM vs VM)

Optimizations XX end-to-end latency improvement based on VM

Interrupt + IPI + Timer Passthrough 8%

Memory devirtualization 14%

DMA devirtualization 2%

ALL 20%-30%

• XX

Two Real-world Applications in ByteDance

BM vs VM Result

Real-world Application Result (BM vs Native Host)
XX End-to-end latency

 (normalized, lower is better)

Native Host 1

BM 1.01

XX End-to-end latency

 (normalized, lower is better)

Native Host 1

BM 0.91

One Partition Result Four Partitions Result

One Partition

• Native host: partition the server with only
one runc container and run an XX in it.

• BM: partition the server with only one BM
and run an XX in it.

Four Partitions

• Native host: partition the server with four runc
containers and run an XX in each partition

• BM: partition the server with four BMs and
run an XX in each partition

Status and Future Work

• Kernel patches posted to upstream

• Live migration support

• virtio-balloon and memory hot plug support

Future work

Status

• Support both Intel and AMD

• Support both QEMU and Cloud-hypervisor as VMM

Thanks very much

Q & A

