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● It’s cool

● First birthday of the code!

● Might be inspiring

● Provide a “mental model” for [1]

● Resolve open discussion points

[1] https://lore.kernel.org/kvmarm/20220519134204.5379-1-will@kernel.org/

Why talk about pKVM?

https://lore.kernel.org/kvmarm/20220519134204.5379-1-will@kernel.org/


Disclaimer

For more information about the “why” and Android details:

● https://source.android.com/docs/core/virtualization?hl=en
● https://lwn.net/Articles/836693/
● https://www.youtube.com/watch?v=wY-u6n75iXc
● https://lpc.events/event/7/contributions/780/attachments/514/925/LPC2020_-_Protected_KVM_.pdf

https://source.android.com/docs/core/virtualization?hl=en
https://lwn.net/Articles/836693/
https://www.youtube.com/watch?v=wY-u6n75iXc
https://lpc.events/event/7/contributions/780/attachments/514/925/LPC2020_-_Protected_KVM_.pdf


KVM port on armv8.0A (nVHE)

Host Linux Kernel

KVM World-switch code

task

KVM

task VMM

Android

Guest Kernel

task

task task

Guest userspace

Stage-2 translation



pKVM overview

Host Linux Kernel

Protected KVM hypervisor

task

KVM

task VMM

Android

Guest Kernel

task

task task

Guest userspace

Stage-2 translationStage-2 translation



Benefits

● Hypervisor and kernel are in the same image   (code in arch/arm64/kvm/hyp/nvhe/ upstream)

● Good for hypervisor updatability, leverages existing infrastructure for kernel updates

● Hypervisor and kernel updates are ‘atomic’, so no ABI between them!

● Hypervisor code is open source, auditable, patcheable, …



Hello!
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Page ownership tracking

● There are several possible ‘types’ of owners for memory

○ The host

○ The hypervisor

○ Guest VMs

○ …

● Pages are in one of four states for each possible owner:

○ PKVM_PAGE_OWNED exclusive access to the page

○ PKVM_PAGE_SHARED_OWNED page shared by current owner with another entity

○ PKVM_PAGE_SHARED_BORROWED page shared with current owner by another entity

○ PKVM_NOPAGE no access to the page



Page ownership tracking

● The state of pages is stored in the Software Bits of PTEs

● Sharing is only possible between two entities (no n-way sharing yet)

● In the host’s stage-2, bits [63-1] in each invalid PTE is used to store the identifier of the page 

owner. The host’s identifier is 0.
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Creating a guest

● Host allocates pages for EL2 (GFP_KERNEL_ACCOUNT)

● Hypervisor receives a __pkvm_init_shadow() hypercall and

○ Converts allocated pages with a host-to-hypervisor donation

○ Allocates a shadow_handle

○ Initializes EL2-private guest and vCPU state (struct kvm, struct kvm_vcpu, stage-2 PGD)

● The shadow_handle is returned to EL1 and stored struct kvm
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EL2 infrastructure

● hyp_spin_lock() / hyp_spin_unlock()

○ No mutex, EL2 is non-preemptible

● CONFIG_NVHE_EL2_DEBUG

○ hyp_lock_assert_held()

● Buddy page allocator (limited usage)

● per-cpu variables

● hyp_vmemmap

● percpu fixmap

● tracing (WiP)

● …



Running the guest 



vCPU load/put

● KVM/arm64 uses vcpu_load()/vcpu_put() optimization to make a vCPU “resident”

● Host issues a __pkvm_vcpu_load(shadow_handle, vcpu_id, …) hypercall

○ Hypervisor sanity checks parameters 

○ It then takes a reference on the shadow VM (to prevent teardown while in use)

○ A per-cpu EL2 variable is updated to point at loaded shadow

● Subsequent hypercalls (e.g. __vcpu_run()) may require a loaded vCPU

● __pkvm_vcpu_put() will “sync” the shadow vCPU state with the host for non-protected VMs, 

drop the reference on the shadow, and clear the EL2 per-cpu variable
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vCPU run

● Host issues a __vcpu_run() hypercall

○ Hypervisor expects a loaded vCPU

○ Hypervisor “flushes” vCPU state

○ Context switches using the shadow vCPU, and erets in the guest

○ On exit, it switches back to the host, and “sync” the state 



Exit handling

● Some exits can be handled at EL2 directly, for example

○ FP traps requiring to context switch from host FP state to the guest’s

○ Some of the vgic_v3 sysreg emulation

○ PAuth traps

○ Some guest hypercalls

○ …

● Other exits need handling on the host side

● Host-side handling can be similar to standard KVM, with a notable exception for instruction and 

data aborts



Instruction and data aborts

1
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MMIO exits

● Hypervisor has no understanding of memslots

● Guest GPRs must remain private (for protected guests) 

Not good for MMIO exits!

● Hypervisor exposes ARM_SMCCC_KVM_FUNC_MMIO_GUARD_* hypercalls

● Protected guests must ‘declare’ the MMIO ranges in their IPA space

● Hypervisor uses r0 as a transfer register in these regions



Share hypercalls from guests

● pKVM exposes ARM_SMCCC_KVM_FUNC_MEM_{UN}SHARE hypercalls to protected guests

● If requested page is mapped in guest, hypervisor applies a guest-to-host {un}share conversion

● If not paged-in, “eret” with a fake ESR to trigger the page fault path. The guest PC is rewound 

by one instruction, to re-try on next vcpu_run



Notes on guest firmware loading

● Device bootloader (ABL) copies guest bootloader in a reserved memory region

● Said memory region is unmapped from host stage-2 at pKVM init time

● When pages are initially mapped into the guest (due to host donations), the hypervisor copies 

guest bootloader on the fly, but only for protected VMs

● The guest bootloader can then load and verify the payload

● The IPA range where guest firmware should be loaded is specified via an ioctl()



Handling of host stage-2 faults

● Host stage-2 mappings are created lazily

● When a fault is taken, the hypervisor walks the host’s stage-2 page-table to check the state of 

the page
○ If the PTE is invalid, but the owner id encoded in bits [63-1] is the host’s we idmap the page and return to 

the host

○ If the PTE is valid, we’ve probably raced with another CPU and return to the host

○ If the PTE is invalid, and the owner id is not the host’s, we caught it red-handed accessing private memory
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You shall not pass!

● The hypervisor injects an exception back in the host

● If the fault was taken from EL1, ESR_EL1 is munged to report a same-level fault

● We set ESR_EL1.S1PTW to allow the host’s exception handler to distinguish this fault from a 

normal stage-1 fault

● If the fault was taken from EL0, the host’s handler will SEGV the userspace process

● If the fault was taken from EL1, we might be in trouble…



Stage-2 fault taken from EL1

● No problem if taken from uaccess() functions

● Big problem if taken from e.g. process_vm_readv()

○ strace-ing a malicious VMM that passes guest private memory to a syscall brings the machine down

○ Alternative solution required before this can land upstream



Promising solution

● Extend private-fd proposal [1] for pKVM

○ prevents swap and page-migrations

○ should prevent spurious kernel accesses to guest private memory by construction

○ offers a suitable API for hypervisor-assisted page migration in the future

● Support for in-place conversions is a must-have

● Would secretmem extended with the new memfile_notifier suffice?

[1] https://lore.kernel.org/lkml/20220706082016.2603916-1-chao.p.peng@linux.intel.com/

https://lore.kernel.org/lkml/20220706082016.2603916-1-chao.p.peng@linux.intel.com/


Not so promising solution

● Silently kill the guest at EL2, poison memory, and return to the host

● Pros:

○ Prevents host crashes

○ Longterm GUP pin sufficient (?)

● Cons:

○ Complexity at EL2

○ The guest is incorrectly sanctioned

○ KVM made aware asynchronously, hard to debug



Tearing the guest down



Guest teardown

● __pkvm_teardown_shadow() can be called when there are no loaded vCPUs for the guest

● Guest pages need to be returned to the host

○ Needs poisoning!

○ Reminder: EL2 is non-preemptible

○ Cannot be done in a single step
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Phew!



Not covered in this talk

● FF-A / Secure-world communications

● IOMMUs / DMA protection

● Interrupts / timers / … 

● PSCI

● TRNG

● ?



Limitations of current patch series

● Missing KVM features for non-protected guests (dirty-logging, RO memslots, …)

○ We have a working prototype

● Stubbed MMU notifiers (KSM, …) for non-protected guests

○ Requires minimal hypervisor support for multi-sharing

● No support for guest memory backed by huge-pages

● No support for kexec

● Device assignment



Thanks.

Please reach out! qperret@google.com / android-kvm@google.com



Questions?



BACKUP
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Android

Exception levels on arm64, in Android today, by privilege
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Guest creation

● Must happen before the first vCPU run

● The host allocates pages for EL2, and issues a __pkvm_init_shadow() hypercall

● Then the EL2 hypervisor:

○ changes the owner of allocated pages from “host” to “hypervisor” and unmaps/maps from 
corresponding page-tables (more details on ownership transitions later) ;

○ allocates a “shadow handle”, which represents the EL2 instance of the VM;
○ uses donated pages to store EL2-private struct kvm, struct kvm_vcpu, and associates them 

with the handle;
○ initializes the structs using e.g. vCPU reset state
○ checks and “pins” pages containing the host kvm and vcpu structs in a “shared” state;
○ allocates and initializes the guest’s stage-2 PGD using donated pages
○ returns the shadow handle to EL1

● EL1 stores the shadow handle in it’s own kvm struct

● Subsequent pKVM-specific hypercalls (e.g. __vcpu_run()) will require a shadow handle

● The above is required for protected and non-protected guests



Instruction and data aborts

● When returning to the host because of an instruction or data abort, ESR and 

HPFAR are copied in the host’s vCPU struct

● KVM converts the GPA in an HVA, and takes a long-term GUP pin on the 

corresponding page to prevent swap and page migration (more on this later)

● KVM tops-up a per-vcpu memcache, and issues a __pkvm_guest_map(pfn, 

gfn) hypercall

● The hypervisor tops up its own memcache using the host-provided memcache 

(each page goes through a full donation procedure, including ownership checks and such)

● The hypervisor attempts a host-to-guest donation for protected guests, or a 

host-to-guest share for non-protected guests, and returns to the host



Guest teardown

● __pkvm_teardown_shadow() can be called when there are no loaded vCPUs for the guest

● The hypervisor will walk the guest’s stage-2 page-table, and mark all the pages owned by the 

guest as pending reclaim

● It also frees the shadow handle and the shadow data-structures

● The host can then issue __pkvm_host_reclaim_page() for each page

● The hypervisor will poison the page if it belonged to a protected guest, and map it back in the 

host’s stage-2

● Once reclaimed, the host drops the long-term GUP pin on the page

● Stage-2 page-table pages and shadow pages are also reclaimed by the host



Hypervisor VA Space

0x0

X = BIT(vabits_actual -1)

End of TTBR0’s addressing range

Identity-mapped page.
The entire VA space layout depends on its position.



Hypervisor VA Space

0x0

X = BIT(vabits_actual -1)

X / 2

Sparse linear map
Mappings in this range have a fixed VA-PA offset. Only 

maps what the hypervisor really needs, and not all of 
memory.

Randomized offset

End of TTBR0’s addressing range

Identity-mapped page.
The entire VA space layout depends on its position.



Hypervisor VA Space

0x0

X = BIT(vabits_actual -1)

X / 2

3X / 8

X / 4

Sparse linear map
Mappings in this range have a fixed VA-PA offset. Only 

maps what the hypervisor really needs, and not all of 
memory.

Randomized offset

End of TTBR0’s addressing range

Identity-mapped page.
The entire VA space layout depends on its position.

“Private” address range
No rules for VA-PA relation, similar to vmalloc space



Hypervisor VA Space

0x0

X = BIT(vabits_actual -1)

X / 2

3X / 8

X / 4

Sparse linear map
Mappings in this range have a fixed VA-PA offset. Only 

maps what the hypervisor really needs, and not all of 
memory.

Randomized offset

End of TTBR0’s addressing range

Identity-mapped page.
The entire VA space layout depends on its position.

“Private” address range
No rules for VA-PA relation, similar to vmalloc space

hyp_vmemmap
Virtual array holding per-page metadata in struct hyp_page



Hypervisor VA Space

0x0

X = BIT(vabits_actual -1)

X / 2

3X / 8

X / 4

Sparse linear map
Mappings in this range have a fixed VA-PA offset. Only 

maps what the hypervisor really needs, and not all of 
memory.

Randomized offset

End of TTBR0’s addressing range

Identity-mapped page.
The entire VA space layout depends on its position.

“Private” address range
No rules for VA-PA relation, similar to vmalloc space

hyp_vmemmap
Virtual array holding per-page metadata in struct hyp_page

Disclaimer: this may change, see Marc Zyngier’s talk:

“Now You See Me, Now You Don't: Splitting pKVM Into Discrete,

Mutually Exclusive Address Spaces”



hyp_vmemmap

struct hyp_page {

        u16 refcount;

        u8 order;

        u8 flags;

};

Used for:
- counting PTEs in page-table pages
- hyp_{get,put}_page() with buddy allocator
- “pinning” a page in shared state

Used by the EL2 page allocator
Enables memory coallescing of “buddy” pages up 
to MAX_ORDER

Per-page flags
Currently used in guest teardown path:

- HOST_PAGE_NEED_POISONING
- HOST_PAGE_PENDING_RECLAIM


