
Protected KVM on arm64:
A Technical Deep Dive

Quentin Perret <qperret@google.com>

● It’s cool

● First birthday of the code!

● Might be inspiring

● Provide a “mental model” for [1]

● Resolve open discussion points

[1] https://lore.kernel.org/kvmarm/20220519134204.5379-1-will@kernel.org/

Why talk about pKVM?

https://lore.kernel.org/kvmarm/20220519134204.5379-1-will@kernel.org/

Disclaimer

For more information about the “why” and Android details:

● https://source.android.com/docs/core/virtualization?hl=en
● https://lwn.net/Articles/836693/
● https://www.youtube.com/watch?v=wY-u6n75iXc
● https://lpc.events/event/7/contributions/780/attachments/514/925/LPC2020_-_Protected_KVM_.pdf

https://source.android.com/docs/core/virtualization?hl=en
https://lwn.net/Articles/836693/
https://www.youtube.com/watch?v=wY-u6n75iXc
https://lpc.events/event/7/contributions/780/attachments/514/925/LPC2020_-_Protected_KVM_.pdf

KVM port on armv8.0A (nVHE)

Host Linux Kernel

KVM World-switch code

task

KVM

task VMM

Android

Guest Kernel

task

task task

Guest userspace

Stage-2 translation

pKVM overview

Host Linux Kernel

Protected KVM hypervisor

task

KVM

task VMM

Android

Guest Kernel

task

task task

Guest userspace

Stage-2 translationStage-2 translation

Benefits

● Hypervisor and kernel are in the same image (code in arch/arm64/kvm/hyp/nvhe/ upstream)

● Good for hypervisor updatability, leverages existing infrastructure for kernel updates

● Hypervisor and kernel updates are ‘atomic’, so no ABI between them!

● Hypervisor code is open source, auditable, patcheable, …

Hello!

Booting the device

Booting the device

Early boot

● Bootloader verifies kernel image

● Kernel is entered at EL2

● Kernel install stub vectors, and

erets to EL1

Booting the device

Early boot Memory reservation

● Bootloader verifies kernel image

● Kernel is entered at EL2

● Kernel install stub vectors, and

erets to EL1

● EL2 memory pool reserved using

memblock API

● Used for EL2-private data-structures,

hypervisor stage-1 and host stage-2

page-tables

Booting the device

Early boot Memory reservation Preparing init

● Bootloader verifies kernel image

● Kernel is entered at EL2

● Kernel install stub vectors, and

erets to EL1

● EL2 memory pool reserved using

memblock API

● Used for EL2-private data-structures,

hypervisor stage-1 and host stage-2

page-tables

● Host allocates temporary

hypervisor stage-1 page-table

● Host allocates EL2 stacks,

per-cpu pages, …

● __pkvm_init() hypercall

Booting the device

Early boot Memory reservation Preparing init pKVM init

● Bootloader verifies kernel image

● Kernel is entered at EL2

● Kernel install stub vectors, and

erets to EL1

● EL2 memory pool reserved using

memblock API

● Used for EL2-private data-structures,

hypervisor stage-1 and host stage-2

page-tables

● Host allocates temporary

hypervisor stage-1 page-table

● Host allocates EL2 stacks,

per-cpu pages, …

● __pkvm_init() hypercall

● EL2 re-creates stage-1 page-table

● Host stage-2 page-table is initialized

● EL2 unmaps itself from host stage-2

Booting the device

Early boot Memory reservation Preparing init pKVM init Host deprivileged

● Bootloader verifies kernel image

● Kernel is entered at EL2

● Kernel install stub vectors, and

erets to EL1

● EL2 memory pool reserved using

memblock API

● Used for EL2-private data-structures,

hypervisor stage-1 and host stage-2

page-tables

● Host allocates temporary

hypervisor stage-1 page-table

● Host allocates EL2 stacks,

per-cpu pages, …

● __pkvm_init() hypercall

● EL2 re-creates stage-1 page-table

● Host stage-2 page-table is initialized

● EL2 unmaps itself from host stage-2

The host is now untrusted, only

hypercalls can be used to

communicate with EL2.

Booting the device

Early boot Memory reservation Preparing init pKVM init Host deprivileged

● Bootloader verifies kernel image

● Kernel is entered at EL2

● Kernel install stub vectors, and

erets to EL1

● EL2 memory pool reserved using

memblock API

● Used for EL2-private data-structures,

hypervisor stage-1 and host stage-2

page-tables

● Host allocates temporary

hypervisor stage-1 page-table

● Host allocates EL2 stacks,

per-cpu pages, …

● __pkvm_init() hypercall

● EL2 re-creates stage-1 page-table

● Host stage-2 page-table is initialized

● EL2 unmaps itself from host stage-2

The host is now untrusted, only

hypercalls can be used to

communicate with EL2.

Yay!

Page ownership tracking

● There are several possible ‘types’ of owners for memory

○ The host

○ The hypervisor

○ Guest VMs

○ …

● Pages are in one of four states for each possible owner:

○ PKVM_PAGE_OWNED exclusive access to the page

○ PKVM_PAGE_SHARED_OWNED page shared by current owner with another entity

○ PKVM_PAGE_SHARED_BORROWED page shared with current owner by another entity

○ PKVM_NOPAGE no access to the page

Page ownership tracking

● The state of pages is stored in the Software Bits of PTEs

● Sharing is only possible between two entities (no n-way sharing yet)

● In the host’s stage-2, bits [63-1] in each invalid PTE is used to store the identifier of the page

owner. The host’s identifier is 0.

Page conversions

DONATION Initiator Completer

Before PKVM_PAGE_OWNED PKVM_NOPAGE

After PKVM_NOPAGE PKVM_PAGE_OWNED

Page conversions

DONATION Initiator Completer

Before PKVM_PAGE_OWNED PKVM_NOPAGE

After PKVM_NOPAGE PKVM_PAGE_OWNED

SHARE Initiator Completer

Before PKVM_PAGE_OWNED PKVM_NOPAGE

After PKVM_PAGE_SHARED_OWNED PKVM_PAGE_SHARED_BORROWED

Page conversions

DONATION Initiator Completer

Before PKVM_PAGE_OWNED PKVM_NOPAGE

After PKVM_NOPAGE PKVM_PAGE_OWNED

SHARE Initiator Completer

Before PKVM_PAGE_OWNED PKVM_NOPAGE

After PKVM_PAGE_SHARED_OWNED PKVM_PAGE_SHARED_BORROWED

UNSHARE Initiator Completer

Before PKVM_PAGE_SHARED_OWNED PKVM_PAGE_SHARED_BORROWED

After PKVM_PAGE_OWNED PKVM_NOPAGE

Creating a guest

Creating a guest

● Host allocates pages for EL2 (GFP_KERNEL_ACCOUNT)

● Hypervisor receives a __pkvm_init_shadow() hypercall and

○ Converts allocated pages with a host-to-hypervisor donation

○ Allocates a shadow_handle

○ Initializes EL2-private guest and vCPU state (struct kvm, struct kvm_vcpu, stage-2 PGD)

● The shadow_handle is returned to EL1 and stored struct kvm

Guest data-structures

Host Linux Kernel

pKVM hypervisor

task

task VMM

Android

struct vcpu {

 …

}

struct kvm {

 …
 .arch.pkvm.shadow_handle;
 …

};

EL1

EL2

Guest data-structures

Host Linux Kernel

pKVM hypervisor

task

task VMM

Android

struct vcpu {

 …

}

struct kvm {

 …
 .arch.pkvm.shadow_handle;
 …

};

struct kvm_shadow_vcpu {

 struct kvm_vcpu shadow_vcpu;

 struct kvm_vcpu *host_vcpu;
 …
}

struct kvm_shadow_vm {

 struct kvm shadow_kvm;

 struct kvm *host_kvm;
 …
};

EL1

EL2

Guest data-structures

Host Linux Kernel

pKVM hypervisor

task

task VMM

Android

struct vcpu {

 …

}

struct kvm {

 …
 .arch.pkvm.shadow_handle;
 …

};

struct kvm_shadow_vcpu {

 struct kvm_vcpu shadow_vcpu;

 struct kvm_vcpu *host_vcpu;
 …
}

struct kvm_shadow_vm {

 struct kvm shadow_kvm;

 struct kvm *host_kvm;
 …
};

EL1

EL2

Guest data-structures

Host Linux Kernel

pKVM hypervisor

task

task VMM

Android

struct vcpu {

 …

}

struct kvm {

 …
 .arch.pkvm.shadow_handle;
 …

};

struct kvm_shadow_vcpu {

 struct kvm_vcpu shadow_vcpu;

 struct kvm_vcpu *host_vcpu;
 …
}

struct kvm_shadow_vm {

 struct kvm shadow_kvm;

 struct kvm *host_kvm;
 …
};

EL1

EL2

Noice!

EL2 infrastructure

● hyp_spin_lock() / hyp_spin_unlock()

○ No mutex, EL2 is non-preemptible

● CONFIG_NVHE_EL2_DEBUG

○ hyp_lock_assert_held()

● Buddy page allocator (limited usage)

● per-cpu variables

● hyp_vmemmap

● percpu fixmap

● tracing (WiP)

● …

Running the guest

vCPU load/put

● KVM/arm64 uses vcpu_load()/vcpu_put() optimization to make a vCPU “resident”

● Host issues a __pkvm_vcpu_load(shadow_handle, vcpu_id, …) hypercall

○ Hypervisor sanity checks parameters

○ It then takes a reference on the shadow VM (to prevent teardown while in use)

○ A per-cpu EL2 variable is updated to point at loaded shadow

● Subsequent hypercalls (e.g. __vcpu_run()) may require a loaded vCPU

● __pkvm_vcpu_put() will “sync” the shadow vCPU state with the host for non-protected VMs,

drop the reference on the shadow, and clear the EL2 per-cpu variable

Sync and flush

Host Linux Kernel

pKVM hypervisor

task

task VMM

Android

struct vcpu {

 …

}

struct kvm {

 …
 .arch.pkvm.shadow_handle;
 …

};

struct kvm_shadow_vcpu {

 struct kvm_vcpu shadow_vcpu;

 struct kvm_vcpu *host_vcpu;
 …
}

struct kvm_shadow_vm {

 struct kvm shadow_kvm;

 struct kvm *host_kvm;
 …
};

EL1

EL2

Sync and flush

Host Linux Kernel

pKVM hypervisor

task

task VMM

Android

struct vcpu {

 …

}

struct kvm {

 …
 .arch.pkvm.shadow_handle;
 …

};

struct kvm_shadow_vcpu {

 struct kvm_vcpu shadow_vcpu;

 struct kvm_vcpu *host_vcpu;
 …
}

struct kvm_shadow_vm {

 struct kvm shadow_kvm;

 struct kvm *host_kvm;
 …
};

EL1

EL2

SYNC

Sync and flush

Host Linux Kernel

pKVM hypervisor

task

task VMM

Android

struct vcpu {

 …

}

struct kvm {

 …
 .arch.pkvm.shadow_handle;
 …

};

struct kvm_shadow_vcpu {

 struct kvm_vcpu shadow_vcpu;

 struct kvm_vcpu *host_vcpu;
 …
}

struct kvm_shadow_vm {

 struct kvm shadow_kvm;

 struct kvm *host_kvm;
 …
};

EL1

EL2

FLUSH

vCPU run

● Host issues a __vcpu_run() hypercall

○ Hypervisor expects a loaded vCPU

○ Hypervisor “flushes” vCPU state

○ Context switches using the shadow vCPU, and erets in the guest

○ On exit, it switches back to the host, and “sync” the state

Exit handling

● Some exits can be handled at EL2 directly, for example

○ FP traps requiring to context switch from host FP state to the guest’s

○ Some of the vgic_v3 sysreg emulation

○ PAuth traps

○ Some guest hypercalls

○ …

● Other exits need handling on the host side

● Host-side handling can be similar to standard KVM, with a notable exception for instruction and

data aborts

Instruction and data aborts

1

Instruction and data aborts

1

2

● Instruction/data abort
● ESR and GPA copied to host vcpu struct
● “eret” to EL1

Instruction and data aborts

1

2

3

● Instruction/data abort
● ESR and GPA copied to host vcpu struct
● “eret” to EL1

● GPA is converted to HVA
● KVM takes long-term GUP pin

○ Prevents swap and page migration
○ More on this later

Instruction and data aborts

1

2

3

4

● Instruction/data abort
● ESR and GPA copied to host vcpu struct
● “eret” to EL1

● GPA is converted to HVA
● KVM takes long-term GUP pin

○ Prevents swap and page migration
○ More on this later

● KVM tops-up per-vcpu memcache
● __pkvm_guest_map(pfn, gfn, …) hypercall

Instruction and data aborts

1

2

3

4

● Instruction/data abort
● ESR and GPA copied to host vcpu struct
● “eret” to EL1

● GPA is converted to HVA
● KVM takes long-term GUP pin

○ Prevents swap and page migration
○ More on this later

● KVM tops-up per-vcpu memcache
● __pkvm_guest_map(pfn, gfn, …) hypercall

● Hypervisor tops up its own vcpu memcache
● Each page goes through a host-to-hypervisor

donation

5

Instruction and data aborts

1

2

3

4

5

6

● Instruction/data abort
● ESR and GPA copied to host vcpu struct
● “eret” to EL1

● GPA is converted to HVA
● KVM takes long-term GUP pin

○ Prevents swap and page migration
○ More on this later

● KVM tops-up per-vcpu memcache
● __pkvm_guest_map(pfn, gfn, …) hypercall

● Hypervisor tops up its own vcpu memcache
● Each page goes through a host-to-hypervisor

donation

● For protected guests: host-to-guest donation
● For non-protected guests: host-to-guest share

Instruction and data aborts

1

2

3

4

5

6

● Instruction/data abort
● ESR and GPA copied to host vcpu struct
● “eret” to EL1

● GPA is converted to HVA
● KVM takes long-term GUP pin

○ Prevents swap and page migration
○ More on this later

● KVM tops-up per-vcpu memcache
● __pkvm_guest_map(pfn, gfn, …) hypercall

● Hypervisor tops up its own vcpu memcache
● Each page goes through a host-to-hypervisor

donation

● For protected guests: host-to-guest donation
● For non-protected guests: host-to-guest share

● “eret” to the host
● __vcpu_run() hypercall

MMIO exits

● Hypervisor has no understanding of memslots

● Guest GPRs must remain private (for protected guests)

MMIO exits

● Hypervisor has no understanding of memslots

● Guest GPRs must remain private (for protected guests)

Not good for MMIO exits!

MMIO exits

● Hypervisor has no understanding of memslots

● Guest GPRs must remain private (for protected guests)

Not good for MMIO exits!

● Hypervisor exposes ARM_SMCCC_KVM_FUNC_MMIO_GUARD_* hypercalls

● Protected guests must ‘declare’ the MMIO ranges in their IPA space

● Hypervisor uses r0 as a transfer register in these regions

Share hypercalls from guests

● pKVM exposes ARM_SMCCC_KVM_FUNC_MEM_{UN}SHARE hypercalls to protected guests

● If requested page is mapped in guest, hypervisor applies a guest-to-host {un}share conversion

● If not paged-in, “eret” with a fake ESR to trigger the page fault path. The guest PC is rewound

by one instruction, to re-try on next vcpu_run

Notes on guest firmware loading

● Device bootloader (ABL) copies guest bootloader in a reserved memory region

● Said memory region is unmapped from host stage-2 at pKVM init time

● When pages are initially mapped into the guest (due to host donations), the hypervisor copies

guest bootloader on the fly, but only for protected VMs

● The guest bootloader can then load and verify the payload

● The IPA range where guest firmware should be loaded is specified via an ioctl()

Handling of host stage-2 faults

● Host stage-2 mappings are created lazily

● When a fault is taken, the hypervisor walks the host’s stage-2 page-table to check the state of

the page
○ If the PTE is invalid, but the owner id encoded in bits [63-1] is the host’s we idmap the page and return to

the host

○ If the PTE is valid, we’ve probably raced with another CPU and return to the host

○ If the PTE is invalid, and the owner id is not the host’s, we caught it red-handed accessing private memory

Handling of host stage-2 faults

● Host stage-2 mappings are created lazily

● When a fault is taken, the hypervisor walks the host’s stage-2 page-table to check the state of

the page
○ If the PTE is invalid, but the owner id encoded in bits [63-1] is the host’s we idmap the page and return to

the host

○ If the PTE is valid, we’ve probably raced with another CPU and return to the host

○ If the PTE is invalid, and the owner id is not the host’s, we caught it red-handed accessing private memory

AAA
RG

H!

You shall not pass!

● The hypervisor injects an exception back in the host

● If the fault was taken from EL1, ESR_EL1 is munged to report a same-level fault

● We set ESR_EL1.S1PTW to allow the host’s exception handler to distinguish this fault from a

normal stage-1 fault

● If the fault was taken from EL0, the host’s handler will SEGV the userspace process

● If the fault was taken from EL1, we might be in trouble…

Stage-2 fault taken from EL1

● No problem if taken from uaccess() functions

● Big problem if taken from e.g. process_vm_readv()

○ strace-ing a malicious VMM that passes guest private memory to a syscall brings the machine down

○ Alternative solution required before this can land upstream

Promising solution

● Extend private-fd proposal [1] for pKVM

○ prevents swap and page-migrations

○ should prevent spurious kernel accesses to guest private memory by construction

○ offers a suitable API for hypervisor-assisted page migration in the future

● Support for in-place conversions is a must-have

● Would secretmem extended with the new memfile_notifier suffice?

[1] https://lore.kernel.org/lkml/20220706082016.2603916-1-chao.p.peng@linux.intel.com/

https://lore.kernel.org/lkml/20220706082016.2603916-1-chao.p.peng@linux.intel.com/

Not so promising solution

● Silently kill the guest at EL2, poison memory, and return to the host

● Pros:

○ Prevents host crashes

○ Longterm GUP pin sufficient (?)

● Cons:

○ Complexity at EL2

○ The guest is incorrectly sanctioned

○ KVM made aware asynchronously, hard to debug

Tearing the guest down

Guest teardown

● __pkvm_teardown_shadow() can be called when there are no loaded vCPUs for the guest

● Guest pages need to be returned to the host

○ Needs poisoning!

○ Reminder: EL2 is non-preemptible

○ Cannot be done in a single step

Reclaiming guest pages

Host Linux Kernel

pKVM hypervisor

task

task VMM

Android

Guest kernel

task

task task

Guest

Reclaiming guest pages

Host Linux Kernel

pKVM hypervisor

task

task VMM

Android

Guest kernel

task

task task

Guest

__pkvm_teardown_shadow()

Reclaiming guest pages

Host Linux Kernel

pKVM hypervisor

task

task VMM

Android

01010101
11001010
01010011

01010101
11001010
01010011

01010101
11001010
01010011

01010101
11001010
01010011

HOST_PAGE_PENDING_RECLAIM

Reclaiming guest pages

Host Linux Kernel

pKVM hypervisor

task

task VMM

Android

01010101
11001010
01010011

01010101
11001010
01010011

01010101
11001010
01010011

01010101
11001010
01010011

__pkvm_reclaim_page()

HOST_PAGE_PENDING_RECLAIM

Reclaiming guest pages

Host Linux Kernel

pKVM hypervisor

task

task VMM

Android

01010101
11001010
01010011

01010101
11001010
01010011

01010101
11001010
01010011

01010101
11001010
01010011

__pkvm_reclaim_page()

HOST_PAGE_PENDING_RECLAIM

Reclaiming guest pages

Host Linux Kernel

pKVM hypervisor

task

task VMM

Android

01010101
11001010
01010011

01010101
11001010
01010011

01010101
11001010
01010011

__pkvm_reclaim_page()

HOST_PAGE_PENDING_RECLAIM

Reclaiming guest pages

Host Linux Kernel

pKVM hypervisor

task

task VMM

Android

01010101
11001010
01010011

01010101
11001010
01010011

01010101
11001010
01010011

HOST_PAGE_PENDING_RECLAIM

Reclaiming guest pages

Host Linux Kernel

pKVM hypervisor

task

task VMM

Android

01010101
11001010
01010011

01010101
11001010
01010011

01010101
11001010
01010011

__pkvm_reclaim_page()

HOST_PAGE_PENDING_RECLAIM

Reclaiming guest pages

Host Linux Kernel

pKVM hypervisor

task

task VMM

Android

01010101
11001010
01010011

01010101
11001010
01010011

HOST_PAGE_PENDING_RECLAIM

Reclaiming guest pages

Host Linux Kernel

pKVM hypervisor

task

task VMM

Android

01010101
11001010
01010011

01010101
11001010
01010011

__pkvm_reclaim_page()

HOST_PAGE_PENDING_RECLAIM

Reclaiming guest pages

Host Linux Kernel

pKVM hypervisor

task

task VMM

Android

01010101
11001010
01010011

HOST_PAGE_PENDING_RECLAIM

Reclaiming guest pages

Host Linux Kernel

pKVM hypervisor

task

task VMM

Android

01010101
11001010
01010011

__pkvm_reclaim_page()

HOST_PAGE_PENDING_RECLAIM

Reclaiming guest pages

Host Linux Kernel

pKVM hypervisor

task

task VMM

Android

Phew!

Not covered in this talk

● FF-A / Secure-world communications

● IOMMUs / DMA protection

● Interrupts / timers / …

● PSCI

● TRNG

● ?

Limitations of current patch series

● Missing KVM features for non-protected guests (dirty-logging, RO memslots, …)

○ We have a working prototype

● Stubbed MMU notifiers (KSM, …) for non-protected guests

○ Requires minimal hypervisor support for multi-sharing

● No support for guest memory backed by huge-pages

● No support for kexec

● Device assignment

Thanks.

Please reach out! qperret@google.com / android-kvm@google.com

Questions?

BACKUP

Exception levels on arm64, architecturally

Kernel

Hypervisor

task

task task

Kernel

task

task task

Firmware / Secure monitor

Trusted OS

Trusted Partition Manager / Hypervisor *

task

task task

Trusted OS

task

task task
EL0

EL1

EL2

EL3

Secure worldNormal world

* From Arm v8.4A

Exception levels on arm64, in Android today

GKI Kernel

Hypervisor

task

task task

Kernel

task

task task

Firmware / Secure monitor

Trusted OS

Trusted Partition Manager / Hypervisor *

task

task task

Trusted OS

task

task task
EL0

EL1

EL2

EL3

Secure worldNormal world

* From Arm v8.4A

Android

Android

Exception levels on arm64, in Android today, by privilege

GKI Kernel

Hypervisor

task

task task

Kernel

task

task task

Firmware / Secure monitor

Trusted OS

Trusted Partition Manager / Hypervisor *

task

task task

Trusted OS

task

task task

No
rm

al
 w

or
ld

Se
cu

re
 w

or
ld

Increasing privilege

● DRM, crypto, ...
● Third party OSes
● Opaque blobs

Android

Exception levels on arm64, in Android today, by privilege

GKI Kernel

Hypervisor

task

task task

Kernel

task

task task

Firmware / Secure monitor

Trusted OS

Trusted Partition Manager / Hypervisor *

task

task task

Trusted OS

task

task task

No
rm

al
 w

or
ld

Se
cu

re
 w

or
ld

Increasing privilege

● DRM, crypto, ...
● Third party OSes
● Opaque blobs

Guest creation

● Must happen before the first vCPU run

● The host allocates pages for EL2, and issues a __pkvm_init_shadow() hypercall

● Then the EL2 hypervisor:

○ changes the owner of allocated pages from “host” to “hypervisor” and unmaps/maps from
corresponding page-tables (more details on ownership transitions later) ;

○ allocates a “shadow handle”, which represents the EL2 instance of the VM;
○ uses donated pages to store EL2-private struct kvm, struct kvm_vcpu, and associates them

with the handle;
○ initializes the structs using e.g. vCPU reset state
○ checks and “pins” pages containing the host kvm and vcpu structs in a “shared” state;
○ allocates and initializes the guest’s stage-2 PGD using donated pages
○ returns the shadow handle to EL1

● EL1 stores the shadow handle in it’s own kvm struct

● Subsequent pKVM-specific hypercalls (e.g. __vcpu_run()) will require a shadow handle

● The above is required for protected and non-protected guests

Instruction and data aborts

● When returning to the host because of an instruction or data abort, ESR and

HPFAR are copied in the host’s vCPU struct

● KVM converts the GPA in an HVA, and takes a long-term GUP pin on the

corresponding page to prevent swap and page migration (more on this later)

● KVM tops-up a per-vcpu memcache, and issues a __pkvm_guest_map(pfn,

gfn) hypercall

● The hypervisor tops up its own memcache using the host-provided memcache

(each page goes through a full donation procedure, including ownership checks and such)

● The hypervisor attempts a host-to-guest donation for protected guests, or a

host-to-guest share for non-protected guests, and returns to the host

Guest teardown

● __pkvm_teardown_shadow() can be called when there are no loaded vCPUs for the guest

● The hypervisor will walk the guest’s stage-2 page-table, and mark all the pages owned by the

guest as pending reclaim

● It also frees the shadow handle and the shadow data-structures

● The host can then issue __pkvm_host_reclaim_page() for each page

● The hypervisor will poison the page if it belonged to a protected guest, and map it back in the

host’s stage-2

● Once reclaimed, the host drops the long-term GUP pin on the page

● Stage-2 page-table pages and shadow pages are also reclaimed by the host

Hypervisor VA Space

0x0

X = BIT(vabits_actual -1)

End of TTBR0’s addressing range

Identity-mapped page.
The entire VA space layout depends on its position.

Hypervisor VA Space

0x0

X = BIT(vabits_actual -1)

X / 2

Sparse linear map
Mappings in this range have a fixed VA-PA offset. Only

maps what the hypervisor really needs, and not all of
memory.

Randomized offset

End of TTBR0’s addressing range

Identity-mapped page.
The entire VA space layout depends on its position.

Hypervisor VA Space

0x0

X = BIT(vabits_actual -1)

X / 2

3X / 8

X / 4

Sparse linear map
Mappings in this range have a fixed VA-PA offset. Only

maps what the hypervisor really needs, and not all of
memory.

Randomized offset

End of TTBR0’s addressing range

Identity-mapped page.
The entire VA space layout depends on its position.

“Private” address range
No rules for VA-PA relation, similar to vmalloc space

Hypervisor VA Space

0x0

X = BIT(vabits_actual -1)

X / 2

3X / 8

X / 4

Sparse linear map
Mappings in this range have a fixed VA-PA offset. Only

maps what the hypervisor really needs, and not all of
memory.

Randomized offset

End of TTBR0’s addressing range

Identity-mapped page.
The entire VA space layout depends on its position.

“Private” address range
No rules for VA-PA relation, similar to vmalloc space

hyp_vmemmap
Virtual array holding per-page metadata in struct hyp_page

Hypervisor VA Space

0x0

X = BIT(vabits_actual -1)

X / 2

3X / 8

X / 4

Sparse linear map
Mappings in this range have a fixed VA-PA offset. Only

maps what the hypervisor really needs, and not all of
memory.

Randomized offset

End of TTBR0’s addressing range

Identity-mapped page.
The entire VA space layout depends on its position.

“Private” address range
No rules for VA-PA relation, similar to vmalloc space

hyp_vmemmap
Virtual array holding per-page metadata in struct hyp_page

Disclaimer: this may change, see Marc Zyngier’s talk:

“Now You See Me, Now You Don't: Splitting pKVM Into Discrete,

Mutually Exclusive Address Spaces”

hyp_vmemmap

struct hyp_page {

 u16 refcount;

 u8 order;

 u8 flags;

};

Used for:
- counting PTEs in page-table pages
- hyp_{get,put}_page() with buddy allocator
- “pinning” a page in shared state

Used by the EL2 page allocator
Enables memory coallescing of “buddy” pages up
to MAX_ORDER

Per-page flags
Currently used in guest teardown path:

- HOST_PAGE_NEED_POISONING
- HOST_PAGE_PENDING_RECLAIM

