
David Matlack
dmatlack@google.com

Exploring an
architecture-neutral MMU

1

mailto:dmatlack@google.com

KVM Memory
Management
from 10,000 ft

vCPU

Memslots

Page Table ManagementPage Fault
Handler

MMU Notifiers
KVM
(common)

Arch-specific
Inputs

KVM
(arch-specific)

Userspace

vCPUs

GFN-to-PFN

get_user_pages*
()

MMU Notifiers

2

KVM MMU in Cloud

● The scalability of the KVM MMU is important for Cloud use-cases.
● Large VMs with 100s of vCPUs and TiB of RAM.
● Customers with broad range of workloads and performance sensitivity.
● Live Migration part of host maintenance strategy.

3

KVM MMU in Cloud

● VMs use direct Two-Dimensional Paging (TDP).
○ Second stage of paging translates GPA to HPA.

● KVM/x86 can do shadow paging, but it's only required on ancient CPUs.
● KVM/ARM always requires TDP support (aka Stage-2)
● One exception: Nested Virtualization (more on this later later)

4

KVM MMU in Cloud

● Significant development has gone into making direct TDP on KVM/x86 scalable and
performant for Cloud.

○ [2020] Introduction of the TDP MMU
○ [2021] TDP MMU Parallel Fault Handling
○ [2021] TDP MMU Lockless Write-Protection Fault Handling
○ [2022] TDP MMU Eager Page Splitting

● Further improvements are under active development.
○ NUMA-aware page table allocation
○ D-bit Dirty Logging
○ Multi-generational LRU support

5

https://lwn.net/Articles/834315/
https://lwn.net/Articles/842560/
https://patchwork.kernel.org/project/kvm/cover/20210630214802.1902448-1-dmatlack@google.com/
https://patchwork.kernel.org/project/kvm/cover/20211213225918.672507-1-dmatlack@google.com/

KVM/ARM MMU in Cloud

● Google Cloud recently announced T2A VMs, our first ARM-based VM offering.

Powered by Ampere® Altra® Arm-based processors, T2A VMs deliver exceptional single-threaded
performance at a compelling price. Tau T2A VMs come in multiple predefined VM shapes, with up to 48
vCPUs per VM, and 4GB of memory per vCPU.

6

https://cloud.google.com/blog/products/compute/tau-t2a-is-first-compute-engine-vm-on-an-arm-chip
https://amperecomputing.com/blogs/2022-07-13/ampere-altra-based-t2a-vms-now-in-preview-on-google-cloud.html

KVM/ARM MMU in Cloud

● Lots of challenges to scale the KVM/ARM MMU for T2A VMs:
○ Interconnect scalability handling broadcast TLBIs and CMOs
○ ARM architecture makes certain PTE changes very expensive (break-before-make)
○ Over-aggressive TLB flushing in the KVM/ARM code
○ MMU Lock Contention

● There are many ARM-specific improvements address these.
○ e.g. local TLB flush instead of broadcast after resolving WP faults.

● But... we are also adopting techniques from the TDP MMU.
○ Parallelized Fault Handling to address MMU lock contention.
○ Eager Page Splitting to avoid huge page splitting faults.

7

https://lore.kernel.org/kvm/20220415215901.1737897-1-oupton@google.com/

Upcoming Live Migration Work

● Looking at our roadmap, there's a lot of overlap between x86 and ARM.

● If other architectures (e.g. RISC-V) get traction in Cloud, we may have to maintain N
copies of these features in KVM.

KVM/x86 KVM/ARM
Feature Want? Have? Want? Have?
Parallel Fault Handling Yes Yes Yes In-Progress
Eager Page Splitting Yes Yes Yes In-Progress
Lockless Write-Protection Fault Handling Yes Yes Probably No
D-Bit Dirty Logging Probably In-Progress Probably No
Multi-gen LRU support Yes In-Progress Probably No

8

Are there ways we can share code instead?

● The common theme among all these features is Page Table Management
● Plus a way to synchronize changes to page tables.

○ RW-Lock, RCU, atomic compare-exchange, and retries.

Feature Page Table Operations
Fault Handling Map @gfn to @pfn at @level
Eager Page Splitting Split Huge Pages from @gfn_start to @gfn_end
Write-Protection Fault Handling Relax Write-Protection Permission for @gfn
D-Bit Dirty Logging Test and Clear PTE Dirty Bits in from @gfn_start to @gfn_end
Multi-gen LRU support Test and Clear PTE Access Bits in from @gfn_start to @gfn_end

9

Making the TDP MMU Architecture-neutral

● Move the the TDP MMU from arch/x86/kvm/mmu/ to virt/kvm/mmu/.
● Delegate low-level implementation details to arch-specific code.

○ PTE bit layout, TLB flushing
● Expose an API for common page table operations:

○ Map @gfn to @pfn at @level
○ Relax Write-Protection Permission for @gfn
○ Split Huge Pages from @gfn_start to @gfn_end
○ Write-Protect from @gfn_start to @gfn_end
○ Test and Clear PTE Dirty/Access Bits in from @gfn_start to @gfn_end
○ Unmap from @gfn_start to @gfn_end

● Expose TDP MMU iterator for architecture-specific page table operations.

10

Making the TDP MMU architecture-neutral

Before*:
● 0% architecture-neutral
● 2295 LOC

180 arch/x86/kvm/mmu/tdp_iter.c

118 arch/x86/kvm/mmu/tdp_iter.h

1901 arch/x86/kvm/mmu/tdp_mmu.c

96 arch/x86/kvm/mmu/tdp_mmu.h

After**:
● 91% architecture-neutral
● 2653 LOC (+358 LOC)

1817 virt/kvm/mmu/tdp_mmu.c

179 virt/kvm/mmu/tdp_iter.c

250 include/linux/tdp_mmu.h

169 include/linux/tdp_iter.h

194 arch/x86/kvm/mmu/tdp_mmu.c

44 arch/x86/include/asm/tdp_pte.h

* At commit 90bde5bea810 (kvm/kvm-queue-post-20220525-rebase)
** RFC patches coming soon.

11

But can it support ARM?

● x86 and ARM both use a second stage of translation for VM memory.
○ Second stage both use a page table data structure.

● Page Tables are PAGE_SIZE.
● Page Table Entries are 64-bits.
● Page Table Entries can point to:

○ Page Tables
○ Huge Pages (aka Blocks)
○ Pages
○ Nothing (Invalid / Non-Preset)

● Page Table Entries can control Read/Write/Execute permissions as well as attributes.
○ e.g. cacheability

12

Differences between x86 and ARM

● x86: Total Store Ordering (TSO) memory model.
● ARM: Weakly ordered memory model.

Solvable? Yes.
● PTE writes need to use smp_store_release()
● Potentially some other minor changes.

13

Differences between x86 and ARM

● x86: Pages are always 4KB
● ARM: Pages can be 4KB, 16KB, or 64KB

Solvable? Yes.
● KVM/ARM Stage-2 page size always follows Linux PAGE_SIZE.
● TDP MMU needs to key off of PAGE_SIZE when calculating e.g. number PTEs per table.
● TDP MMU levels need more abstract names. e.g.

○ PG_LEVEL_4K → TDP_LEVEL_PTE
○ PG_LEVEL_2M → TDP_LEVEL_PMD
○ PG_LEVEL_1G → TDP_LEVEL_PUD
○ etc.

14

Differences between x86 and ARM

● x86: Root page table is always one page.
● ARM: Root page table can be concatenation of multiple page tables.

○ This can avoid a level of lookup, e.g. if root table would only use first N entries.

Solvable? Yes.
● Required for performance parity with KVM/ARM, but not correctness.
● Root page table allocator needs to be able to allocate contiguous page tables.
● TDP MMU iterator needs to be able to walk page tables with contiguous roots.

15

Differences between x86 and ARM

● x86: Huge Pages can be split in place.
○ i.e. replace huge PTE with a PTE pointing to a lower level page table.

● ARM: Software must use Break-Before-Make to split a huge page.
○ ... except if CPUs support FEAT_BBM=2.

Solvable? Yes.
● We can add Break-Before-Make to the TDP MMU Eager Page Splitting.

○ e.g. Behind static_key check for FEAT_BBM=2.
● Or just require FEAT_BBM=2 to use TDP MMU.

Note: Omitting Break-Before-Make can result in TLB conflict aborts, which can be expensive to handle (full
local TLB invalidation). Periodic broadcast TLB invalidations during Eager Page Splitting would probably help.

16

● ARM requires Break-Before-Make for certain PTE changes.
○ Solvable with unmap and let vCPUs fault back in. Eager Page Splitting is the only

special case where avoiding faults is important for performance.
● ARM requires Cache Maintenance Operations (CMOs) after certain PTE changes.

○ Solvable with arch-hooks, but needs to be explored further.
● ARM does not guarantee Permission Faults evict or avoid creating TLB entries.

○ Solvable with local TLB invalidation after resolving permission faults on ARM.
● ARM allows combining contiguous PTEs to create intermediate huge page sizes.

○ KVM/ARM does not use Contiguous PTEs today in Stage 2.
■ i.e. no need add support to the TDP MMU

○ But, we may need reconsider if 16KB or 64KB granules gain traction for virtualization.

Other Notable Differences

17

pKVM

● TDP MMU not compatible with pKVM currently.
○ TDP MMU calls out to Linux (RCU, rescheduling, locking, allocation).
○ pKVM stage-2 page table management is done in the hyp; no access to Linux.

● TDP MMU could evolve to support pKVM.
○ Split out pure page table manipulation from higher level operations.
○ Use e.g. atomic counter + spinning instead of call_rcu() for page table freeing.
○ Opportunity to deploy pKVM to other architectures in a common way.

● Alternatively, pKVM could keep using separate Stage-2 code.
○ Android and Cloud are different use-cases.
○ But increases test and maintenance complexity.

18

Nested Virtualization

● The TDP MMU does not do shadow paging.
○ KVM/x86 uses separate code (shadow MMU) for nested.
○ KVM/ARM would need to do the same.

● Architecture-neutral shadow paging for nested?
○ Difficult, since shadowing is inherently more architecture-specific.

■ Guest hypervisor could use any architectural feature.
○ Paravirtualization could be a path toward architecture-neutral nested support.

● Note: the TDP MMU does interoperate with shadow paging.
○ Write-protecting guest page tables + software tag bit in PTE.
○ Hooks for handling write-faults to guest page tables.

19

Conclusion

● About 90% of the existing TDP MMU can be made architecture-neutral.
● Using the TDP MMU for ARM Stage-2 is feasible, but comes with caveats.

○ pKVM would not be supported initially.
○ CPUs with FEAT_BBM < 2 can't use TDP MMU (optional code-complexity trade-off)

● RFC patches to split the TDP MMU into architecture-neutral code is coming soon.
● Open Question: Would any other architectures be interested? RISC-V?

20

