
jon@nutanix.com

Lessons Learned:
Optimizing KVM Performance for EHR Systems

Jon Kohler
Principal Solutions
Architect, Nutanix

@twitter

Agenda

- Quick Context: EHR Systems, Challenges?
- Diving in: debugging a real EHR perf issue

- Practical Example
- Optimization Results

- Zooming out: Related Ecosystem Enhancements
- Appendix:

- Debugging Deep Dive Content
- New to Flamegraphs?

Catering for EHR systems requires diligence

FlowAOS & HCI & Prism Files Objects Mine
Nutanix Acropolis Hypervisor (AHV) - Powered by KVM

- ISV mandates application architecture and core systems behavior.
- Provisioning and Scaling are usually in-elastic, systems rarely get smaller, and

they live-on for a very long time (decades).
- End-users of all abilities and tolerance levels touch system 24/7.
- Some use cases may be life-critical, tolerance for system unavailability and poor

performance is close to zero.
- Many users simply can’t “come back later” when system is working better
- All comes together to keep Infrastructure layer “on its toes”.
- “It takes the whole village” across both KVM and the broader ecosystem to

optimize and sustain performance.

Diving In
A Practical Example

Practical Example
Reported Scaling Issue on EHR* App Layer
- Windows based “front end” EHR workload
- ISV Benchmark reported degradation in scaling vs competitive

platform
- Nutanix AHV 8.0 pre-GA, Kernel 5.10.y based
- Intel Ice Lake hardware
- Particular EHR App “front end” is particularly latency sensitive to

CPU perf
- Benchmark loads up synthetic users with increasing density/core

and measures response time (think load-runner esque), has SLA
“fault” line where response time will be unacceptable.

- Multiple Windows VM’s/host, lightly oversubscribed

* Keeping EHR Vendor Anonymous for Public presentation

Diving In: Reported Competitive Scaling Issue
What’s wrong with this picture?

New to FlameGraphs? See copy-paste example in Slide Appendix

Diving In: Reported Competitive Scaling Issue
What’s wrong with this picture?

#4: Spending a hilarious
amount of time on
speculation control

#2: Each pass through
vcpu_run() is very
expensive, but more so
even without any of its func
calls

#1: All these emulated
handling for IPIs are not
taking any fast paths, and
incurs slowness from all
other issues highlighted,
causing interrupt handling to
be less than ideal

#3: “Mystery” XSAVE
handling overhead for both
load guest and host states

Diving In: Reported Competitive Scaling Issue
Issue 1 and 2 Summary
1. IPI handling overhead, Windows Specific!

a. HyperV SynIC enabled with AutoEOI (default), which disables hardware (Intel
APICv) handling

b. Even with (new) hv-apicv, Windows exits with APIC_WRITE rather than
MSR_WRITE. APIC_WRITE’s do not have exit fastpath handler

c. Fix 1a: Switch to hv-apicv
d. Fix 1b: Introduce new APIC_WRITE fastpath handler

2. vmx_vcpu_run() overhead (~10% FG Samples)
a. Guest enabled eIBRS, each exit spams rdmsr SPEC_CTRL (expensive!),

caused by MSR bitmap interception from eIBRS enablement
b. Also, host debugctl msr update spamming unnecessary (expensive!)
c. Fix 2a: Fixup enablement for eIBRS so kernel does not disable interception
d. Fix 2b: Revert offending commit for debugctl msr issue

Diving In: Reported Competitive Scaling Issue
Issue 3 and 4 Summary
1. XSAVE overhead (~1% FG Samples)

a. Due to Guest vs Host xfeatures state mismatch, each entry/exit spams xsetbv
(expensive!)

b. Mismatch is caused by control plane feature auto-masking MPX and PKU
away from guest.

c. Fix 3: WIP - Fixup early initialization code in FPU to properly compile out MPX
and PKU

2. x86_virt_spec_ctrl overhead (~8% FG Samples)
a. Due to Guest vs Host SPEC_CTRL mismatch, each entry/exit spams wrmsr

SPEC_CTRL
b. wrmsr to SPEC_CTRL stalls pipeline completely (very expensive)
c. Mismatch is (unintentionally?) forced by qemu seccomp config vs kernel

spectre_v2=auto
d. Fix 4: Backport default change in bugs.c to depessmize seccomp

Diving In
Optimization Results

Optimization Results: Improved Flamegraph

Optimization Results: Improved Flamegraph

#1a: Switched on
hv-apicv (hv-avic), IPIs
now accelerated

#1b: added exit fastpath
for APIC_WRITE

#2a/b: Suppressed per-exit rdmsr for
SPEC_CTRL on eIBRS systems and
reverted backport causing
host_debugctrlmsr to spam restore

#3: xsave overhead still
present, but issue now
understood and fix
inflight

#4: SPEC_CTRL
overhead gone,
backported bugs.c
seccomp fix from
upstream

Optimization Results: Improved EHR App Response Time
E

H
R

 A
pp

 R
es

po
ns

e
Ti

m
e

Users per Core

Optimization Results: Improved EHR App Response Time
E

H
R

 A
pp

 R
es

po
ns

e
Ti

m
e

Users per Core

Response time SLA ceiling for
particular app/benchmark

Core KVM improvements lend
additional ~14% density before
SLA fault

Slope of post-SLA ceiling less steep

Optimization Results: Improved LoginVSI Density

Compared new kernel optimized to previous release

VMs: ~320 VMs/host
Windows 10 - 21H2 - updated July 2022, Office 2019 - x64
2 vCPU, 4 GB memory, LoginVSI 4.1

Hardware: Single node
CPU: 2x Intel(R) Xeon(R) Gold 6342 CPU @ 2.8GHz (Ice Lake)
MEM: 2TB
Disk: 6x 1.9TB SSD
AOS 6.5.1 with AHV 7 (5.4.y) vs AHV 8 (5.10.y with optimizations, minus hv-apicv)

Optimization Results: Improved LoginVSI Density

AHV 7 (5.4.y) max reachedResponse time SLA ceiling for
LoginVSI benchmark, called VSIMax

AHV 8 (5.10.y) max NOT reached

Optimization Results: Improved LoginVSI Density

Optimization Results: Improved LoginVSI Density

Optimization Results: Improved LoginVSI Density
Filtering LoginVSI Max upper threshold, like EHR did??

Use Fixed SLA for both datasets

Optimization Results: Improved LoginVSI Density
What if we filter LoginVSI Max upper threshold?

Optimization Results: Improved LoginVSI Density
What if we filter LoginVSI Max upper threshold?

Zooming Out
Related Ecosystem Enhancements

Optimizations Found Along the Way
Related Ecosystem Enhancements

- Open vSwitch
- Thundering Herd with handler* wakeups
- Netlink stats gathering overhead suppression

- Linux VirtIO Driver
- Enabling proper virtio_scsi MQ handling in RHEL 7.x

- Windows VirtIO Driver
- Enabling large (256K+) IO sizes
- VirtIO spec change: Indirect descriptor table size

Open vSwitch: thundering herd from handler* wakeups

Problem: Threading code in OVS [1] causes handler* threads to wake up concurrently in a thundering herd.

Result: Subtle nuance for CPU-sensitive EHR workloads is the herd may kick vCPUs off-cpu that recently
went into halt-polling, due to single_task_running() exit condition on kvm_vcpu_can_poll().

Issue: Reduction in file descriptors [1], allowed kernel to wake up more/all threads at once. Stumbled upon
this using Google SchedViz (see next slide), was existing issue in RHBZ 1834444.

Fix: Backported Kernel [2] and OVS [3] series to add per-CPU upcall dispatch. Note: Both sides are
required or per-cpu upcall dispatch will not work.

Improvement: 28x reduction in wakeups, reduction in application tail latency due to more effective halt
polling.

[1] 69c51582ff78 (“dpif-netlink: don't allocate per thread netlink sockets”) - OVS 2.11+

[2] b83d23a2a38b (“openvswitch: Introduce per-cpu upcall dispatch”) - Kernel 5.15+

[3] b1e517bd2f81 (“dpif-netlink: Introduce per-cpu upcall dispatch.”) - OVS 2.16+

https://bugzilla.redhat.com/show_bug.cgi?id=1834444
https://github.com/openvswitch/ovs/commit/69c51582ff786a68fc325c1c50624715482bc460
https://github.com/torvalds/linux/commit/b83d23a2a38b1770da0491257ae81d52307f7816
https://github.com/openvswitch/ovs/commit/b1e517bd2f818fc7c0cd43ee0b67db4274e6b972

Open vSwitch: thundering herd from handler* wakeups

Here’s
the
Herd!

Open vSwitch: thundering herd from handler* wakeups

Before fixups: 1177 Wakeups
After fixups: 47 Wakeups
Result: 28x reduction in
Wakeups!
Trivial reproduction from 5
second measurement during
steady state, 1x VM reading
from memory cache workload,
very low network activity.
Problem was significantly worse
during activity.
Note: Both numbers include 5
wakeups from dbus_handler

OVS: netlink stats gathering overhead
Problem: OVS uses netlink to communicate with kernel. By default, for any netlink request, kernel
gathers a bunch-o-stats to fill in response struct; however, the netlink request may not actually use said
stats.
Result: ovs-vswitchd daemon constantly on-CPU, stealing cycles from CPU-sensitive EHR VMs.
Issue: Netlink call time dominated by the kernel-side internal stats gathering mechanism, specifically:
 inet6_fill_link_af <<< 42.2% of OVS’ bridge_run() samples

 inet6_fill_ifla6_attrs

 __snmp6_fill_stats64

Fix: Patch [1] OVS to hint to kernel that certain netlink calls do not require stats gathering and backport
[2] kernel fix to make the remaining stats gathering more efficient.
Improvement: Reduces amount of CPU samples during bootstorm in bridge_run() from 11.3 to 3.4%

[1] c0e053f6d11d (“netdev-linux: Skip some internal kernel stats gathering”)

[2] 59f09ae8fac4 (“net: snmp: inline snmp_get_cpu_field()”) - Kernel 5.16+

https://github.com/openvswitch/ovs/commit/c0e053f6d11d5821dd5a7ed753fbecc266bf4050
https://github.com/torvalds/linux/commit/59f09ae8fac4a990070fc6bdc889d0e0118664ea

OVS: netlink stats gathering overhead - Before

OVS: netlink stats gathering overhead - After

Linux VirtIO: Fixing virtio_scsi MQ on RHEL 7.x
Problem: Setting scsi_mod.use_blk_mq=y not sufficient to enable MQ on virtio-scsi MQ devices only on RHEL 7.x

Result: Broken load balancing to vhost-user-scsi backend, poor EHR max scalability

[root@host ~]# top

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

159638 qemu 20 0 64.2g 55m 10m S 1376.0 0.0 18216:38 qemu-kvm <<< Storage Controller

23920 qemu 20 0 48.1g 38m 10m S 1036.1 0.0 905:30.17 qemu-kvm <<< EHR Benchmark

23932 qemu 20 0 8192g 21m 1540 S 95.9 0.0 118:21.33 frodo <<< vhost-user-scsi

[root@host ~]# top -H -b -n 1 |grep frodo

23932 qemu 20 0 8192g 21m 1540 S 0.0 0.0 0:00.45 frodo <<< control thread

23933 qemu 20 0 8192g 21m 1540 S 0.0 0.0 21:35.46 frodo <<< wk0

23934 qemu 20 0 8192g 21m 1540 R 96.2 0.0 28:38.67 frodo <<< wk1: all IO to single queue

Fix: Reported RH BZ 1752305, Fixed on RH Errata RHSA-2020:1016 (RHEL 7.8+, kernel-3.10.0.1127.el7+), RHEL kernel
source was missing ccbedf117f01 ("virtio_scsi: support multi hw queue of blk-mq")

https://bugzilla.redhat.com/show_bug.cgi?id=1752305
https://access.redhat.com/errata/RHSA-2020:1016
https://github.com/torvalds/linux/commit/ccbedf117f015d4f415130069b47d63c359bc110

Windows VirtIO: large IO sizes & DB performance

Problem: One EHR vendor reporting DB benchmark stresses large IO for emulating high volume SQL
DB backup and restore. Poor performance seen during these phases in particular, not consistent with
Linux based reproductions.

Result: Customer go-live issues as benchmark pass is required for vendor sign off.

Issue: Defaults in virtio-win/vioscsi did not allow large contiguous IOs. Multiple attempts [1][2][3] at
resolution didn’t quite meet the mark and in fact caused both even worse performance and BSODs on
our platform.

Fix: Upstreamed our fix [4] for off-by-one and max_sector handling to properly align IO sizes.

Improvement: Hit 100GbE line speed during backup benchmark. Restore benchmark is smooth now.

[1] 62e452b94b52 (“[vioscsi] Bug 1787022 - Windows virtio-scsi driver performs poorly ”)

[2] c62a8a2c7bf7 (“vioscsi: Increasing max phys breaks to 512”)

[3] 8a6ae70e2c7b (“[vioscsi] limit NumberOfPhysicalBreaks and MaximumTransferLength”)

[4] 2c64f2af41bb (“vioscsi: fix MaximumTransferLength off-by-one and max_sectors handling”) - source tag mm241 and
higher, fedora virtio-win build 221 and higher

https://github.com/virtio-win/kvm-guest-drivers-windows/commit/62e452b94b5277775f7bee7a0ec1f6148f8a1811
https://github.com/virtio-win/kvm-guest-drivers-windows/commit/c62a8a2c7bf73541fcfd6bc43bcf85147abf2620
https://github.com/virtio-win/kvm-guest-drivers-windows/commit/8a6ae70e2c7b3e2be825d2195999e42fa028cad9
https://github.com/virtio-win/kvm-guest-drivers-windows/commit/2c64f2af41bb2dc959158bab3d10bdcd7e3cfcbb
https://github.com/virtio-win/kvm-guest-drivers-windows/releases/tag/mm241
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/archive-virtio/virtio-win-0.1.221-1/

Windows VirtIO: large IO sizes & DB performance
1MB IO read Backup
hitting 100 GbE Line

limits

512K IO write
Restore t-put
nice and flat

Anonymized EHR DB benchmark result

Windows VirtIO: large IO sizes … the catch?!

Doing this actually should have required a VirtIO Spec Change!
VirtIO-win vioscsi driver violates VirtIO spec for maximum indirect
descriptor size.
Windows 1MB IO takes 4K PAGE_SIZE * 256 SGL
256 SGL Indirect Desc Table Size should not be possible with
VirtIO Spec, and default 128-2 ring size.
This surprise spec change broke our virtio-scsi-user implementation
(we fixed it, at the cost of more memory allocation, matching QEMU)
Upstream Status: Pending VirtIO spec change
PR #122 Allow indirect descriptor tables to exceed the queue size

https://github.com/oasis-tcs/virtio-spec/issues/122

Appendix

Appendix
The Under the Covers Details for

Debugging Example

Issue 1: Windows hv-apicv and APIC_WRITE fastpath

Problem: By default, Kernel/QEMU does not enable Intel vAPIC when base Windows enlightenments are
enabled (e.g. hv-stimer, hv-synic, hv-vapic), deferring instead to Hyper-V’s Synthetic Interrupt
Controller. Even when hv-apicv enabled (not to be confused with hv-vapic), kernel still will not handle them
in the fast path if the guest has less than 240 vCPUs.

Result: Without hv-apicv, Interrupts are emulated and handled by the kvm_emulate_wrmsr path, which does
not live in the vmx_exit_handlers_fastpath(). With hv-apicv, IPI’s are accelerated and trap-like; however,
they are still not handled in exit fastpath, as EXIT_REASON is APIC_WRITE. Note: See Vitaly’s talk Emulating
Hyper-V in 2022 for more details on hv-apicv (aka hv-avic).

Fix: Enabled hv-apicv + add fastpath for EXIT_REASON_APIC_WRITE in vmx_exit_handlers_fastpath().

Note: There are Libvirt enablement issues (no hv-apicv support yet).

Note: Need to upstream APIC_WRITE fastpath kernel patch.

https://sched.co/15jK8
https://sched.co/15jK8

Issue 1: Windows hv-apicv and APIC_WRITE fastpath
arch/x86/kvm/vmx/vmx.c

static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)

 switch (to_vmx(vcpu)->exit_reason.basic) {

 case EXIT_REASON_MSR_WRITE: <<< Handles Linux + Large Windows VMs

 return handle_fastpath_set_msr_irqoff(vcpu);

+ case EXIT_REASON_APIC_WRITE: <<< Handles “Small” Windows VMs

+ if (kvm_vcpu_apicv_active(vcpu)) {

+ handle_apic_write(vcpu);

+ return EXIT_FASTPATH_EXIT_HANDLED;

+ } else {

+ return EXIT_FASTPATH_NONE;

+ }

 case EXIT_REASON_PREEMPTION_TIMER:

 return handle_fastpath_preemption_timer(vcpu);

 default:

Issue 2: vmx_vcpu_run SPEC_CTRL rdmsr overhead

Problem: Guests that use eIBRS write to SPEC_CTRL MSR 1-2 times on boot, then never again;
however, kernel disables SPEC_CTRL interception in MSR bitmap unilaterally, giving guest direct access
to MSR. This is done to avoid an exit on every IBRS write, which was key for IBRS performance, but is
moot for eIBRS “one-and-done” enablement pattern.

Result: When interception is disabled, kernel must rdmsr SPEC_CTRL MSR on every single exit, which
is roughly 40-50% of the “flat top” in vmx_vcpu_run(). Note, this happens within
vmx_vcpu_enter_exit() as part of the guest return, but prior to exit fastpath, so cycles spent here delay
handling IPI delivery.

Fix: For guests that enable eIBRS, do not disable interception in MSR bitmap [1], negating need to do
rdmsr.

[1] [PATCH] [v3] KVM: VMX: do not disable interception for MSR_IA32_SPEC_CTRL on eIBRS

https://patchwork.kernel.org/project/kvm/patch/20220520204115.67580-1-jon@nutanix.com/

Issue 2: vmx_vcpu_run and debugctl regression

Problem: debugctl value is cached on vCPU load, as it architecturally cleared on vmexit and would need
to be restored if set by host prior to load. On many/most systems, debugctl isn’t set during steady state;
however, a commit [1] in 5.17, backported through stable to 5.10, turns this on constantly.

Result: 30-40% of the “flat top” in vmx_vcpu_run() is due to constantly resetting debugctl msr from
cached value. Note, this happens immediately after vmx_vcpu_enter_exit() returns, but prior to exit
fastpath, so cycles spent here delay handling IPI delivery.

Fix: For us, reverting was the cleanest route, as we aren’t exposing the system to the use cases outlined
in the commit.

[1] a01994f5e5c7 (“x86/perf: Default set FREEZE_ON_SMI for all”)

https://github.com/torvalds/linux/commit/a01994f5e5c79d3a35e5e8cf4252c7f2147323c3

Problem: Nutanix control plane auto masks CPU features to handle migration compatibility, including a
deny list. Deny list includes MPX and PKU, which influence xstate features. We need to mask it to maintain
migration compatibility across Ice Lake and non-Ice Lake. PKU masked due to handling bug (long ago).
Result: Masking XSAVE-able features changes the XSAVE mask, so every single pass through
kvm_load_{guest|host}_xsave_state() spams xsetbv, delaying time-to-enter and time-to-IPI
handling.
Fix: Fixup host side mask calculation in very early code to fully compile out MPX and PKU from host
kernel to make xstate feature masks match. This also gets rid of rdpkru/wrpkru from *xsave_state()
calls too.
Note: Need to upstream patch series for review.
Note: See Soham and Shivam’s talk on CPU Feature Management: Lessons from the Trenches for more
discussion on more learnings in this space.

Issue 3: ‘Mystery’ XSAVE overhead, Demystified

https://sched.co/15jJw

Issue 3: Mismatched xstate features: Host XSAVE
Host XSAVE state loads very early, and even compiling out features doesn’t change early code masking.

[0.000000] x86/fpu: Supporting XSAVE feature 0x001: 'x87 floating point registers'
[0.000000] x86/fpu: Supporting XSAVE feature 0x002: 'SSE registers'
[0.000000] x86/fpu: Supporting XSAVE feature 0x004: 'AVX registers'
[0.000000] x86/fpu: Supporting XSAVE feature 0x008: 'MPX bounds registers'
[0.000000] x86/fpu: Supporting XSAVE feature 0x010: 'MPX CSR'
[0.000000] x86/fpu: Supporting XSAVE feature 0x020: 'AVX-512 opmask'
[0.000000] x86/fpu: Supporting XSAVE feature 0x040: 'AVX-512 Hi256'
[0.000000] x86/fpu: Supporting XSAVE feature 0x080: 'AVX-512 ZMM_Hi256'
[0.000000] x86/fpu: Supporting XSAVE feature 0x200: 'Protection Keys User registers'
[0.000000] x86/fpu: xstate_offset[2]: 576, xstate_sizes[2]: 256
[0.000000] x86/fpu: xstate_offset[3]: 832, xstate_sizes[3]: 64
[0.000000] x86/fpu: xstate_offset[4]: 896, xstate_sizes[4]: 64
[0.000000] x86/fpu: xstate_offset[5]: 960, xstate_sizes[5]: 64
[0.000000] x86/fpu: xstate_offset[6]: 1024, xstate_sizes[6]: 512
[0.000000] x86/fpu: xstate_offset[7]: 1536, xstate_sizes[7]: 1024
[0.000000] x86/fpu: xstate_offset[9]: 2560, xstate_sizes[9]: 8
[0.000000] x86/fpu: Enabled xstate features 0x2ff, context size is 2568 bytes, using 'compacted'
format.

Issue 3: Mismatched xstate features: Guest XSAVE

Control Plane automatically masks MPX and PKU feature sets, which are on deny list.

[0.000000] x86/fpu: Supporting XSAVE feature 0x001: 'x87 floating point
registers'
[0.000000] x86/fpu: Supporting XSAVE feature 0x002: 'SSE registers'
[0.000000] x86/fpu: Supporting XSAVE feature 0x004: 'AVX registers'

 <<< Missing MPX here
[0.000000] x86/fpu: Supporting XSAVE feature 0x020: 'AVX-512 opmask'
[0.000000] x86/fpu: Supporting XSAVE feature 0x040: 'AVX-512 Hi256'
[0.000000] x86/fpu: Supporting XSAVE feature 0x080: 'AVX-512 ZMM_Hi256'

<<< Missing PKU here
[0.000000] x86/fpu: xstate_offset[2]: 576, xstate_sizes[2]: 256
[0.000000] x86/fpu: xstate_offset[5]: 832, xstate_sizes[5]: 64
[0.000000] x86/fpu: xstate_offset[6]: 896, xstate_sizes[6]: 512
[0.000000] x86/fpu: xstate_offset[7]: 1408, xstate_sizes[7]: 1024
[0.000000] x86/fpu: Enabled xstate features 0xe7, context size is 2432 bytes,
using 'compacted' format.

Issue 3: Mismatched forever, pain in vcpu_run() loop

arch/x86/kvm/x86.c

void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) { <<< Called before vmx_vcpu_enter_exit()

 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {

 if (vcpu->arch.xcr0 != host_xcr0) <<< Branch hit: Guest 0xe7 != Host 0x2ff

 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); <<< Pain on vm enter, delays enter

 }

}

void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) { <<< Called after vmx_vcpu_enter_exit() returns

 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {

 if (vcpu->arch.xcr0 != host_xcr0) <<< Branch hit: Guest 0xe7 != Host 0x2ff

 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); <<< Pain on vm exit, delays exit handling

 }

}

Issue 4: wicked x86_virt_spec_ctrl overhead

Problem: In QEMU 2.11+, -sandbox on is enabled by default [1], which turns on seccomp. If KVM host has
CONFIG_SECCOMP=y, all SEECOMP jails enable TIF_SPEC_IB and TIF_SSBD, due to spectre_v2=auto
applying to both prctl and seccomp.

Result: Almost always, the guest and host SPEC_CTRL values will not match, resulting in each entry/exit
spamming wrmsr SPEC_CTRL to constantly reset the value. Wrmsr to SPEC_CTRL stalls pipeline completely.

Fix: Backport [2] change in default from 5.16, HUGE tax cut, as host/guest much more likely to match.

[1] RHBZ 1492597 - Enable seccomp by out of the box with QEMU >= 2.11

[2] 2f46993d83ff (“x86: change default to spec_store_bypass_disable=prctl spectre_v2_user=prctl”) 5.16+

(Thank you Andrea Arcangeli !!)

https://bugzilla.redhat.com/show_bug.cgi?id=1492597
https://github.com/torvalds/linux/commit/2f46993d83ff4abb310ef7b4beced56ba96f0d9d

Issue 4: wicked x86_virt_spec_ctrl overhead
Host dmesg extract
[4.294333] Spectre V2 : mitigation: Enabling conditional Indirect Branch Prediction Barrier

[4.294333] Spectre V2 : User space: Mitigation: STIBP via seccomp and prctl

[4.294335] Speculative Store Bypass: Mitigation: Speculative Store Bypass disabled via prctl and seccomp

Process status of qemu-kvm VM
[root@mauricio06 ~]# cat /proc/5733/status

Name: qemu-kvm

Seccomp: 2

Seccomp_filters: 1

Speculation_Store_Bypass: thread force mitigated

Overhead via perf top
 6.11% [kernel] [k] x86_virt_spec_ctrl <<< BRUTAL!

Appendix
New to Flamegraphs?

Profiling C/C++: Linux Perf & Flame Graphs

USAGE
• How: Use Linux Perf to sample service (or entire system) and

run through steps to convert to Flame graph svg.
• What: Study flat tops, understand everything with >1%

sample size, diff flame graphs while iterating, use different
on-cpu, off-cpu, different perf trace points like cache misses,
etc (see Flame Graph docs, presos, vids).

• Watch out for [Unknown] frames.
• Note: perf.data output can be used for other things besides

flame graphs, so it is valuable.

http://www.brendangregg.com/flamegraphs.html

Profiling C/C++: Linux Perf & Flame Graphs

PROS
• Very easy to grab in minute(s), provides fantastic insights to what's on-CPU.
• Easy to understand, Easy to use (searchable).
• Easy to manipulate to show data how you might like, ala different merging.
• Methodology reusable across many languages.

CONS
• Linux perf has a zillion options, easy to get lost on non-important things.
• Requires as much symbolization as possible as it is out of process, so if

3rd party component is on-CPU with no frames or symbols, you’re blind.

Dependencies

wget https://github.com/brendangregg/FlameGraph/archive/master.zip

unzip master.zip

Grabbing profile

sudo perf record -F 997 -a -g -- sleep 10

sudo perf script -f > example.perf

Massage Data (and merge related stacks as needed)

./FlameGraph-master/stackcollapse-perf.pl example.perf > example.folded

./FlameGraph-master/flamegraph.pl example.folded > example-separate.svg

sed -i 's/CPU_\([0-9]*\)/CPU_merged/g' example.folded

sed -i 's/handler\([0-9]*\)/handler-merged/g' example.folded

sed -i 's/revalidator\([0-9]*\)/revalidator-merged/g' example.folded

sed -i 's/vhost-\([0-9]*\)/vhost-merged/g' example.folded

./FlameGraph-master/flamegraph.pl example.folded > example-merged.svg

Viewing profile

scp user@host:example-separate.svg . ## Open in Chrome - original flamegraph

scp user@host:example-merged.svg . ## Open in Chrome - merged flamegraph

Profiling C/C++: Linux Perf & Flame Graphs

https://github.com/brendangregg/FlameGraph/archive/master.zip

