Lessons Learned:
Optimizing KVM Performance for EHR Systems

Jon Kohler

Principal Solutions
Architect, Nutanix

THE

jon@nutanix.com B

Quick Context: EHR Systems, Challenges?
Diving in: debugging a real EHR perf issue

- Practical Example

- Optimization Results

Zooming out: Related Ecosystem Enhancements
Appendix:

- Debugging Deep Dive Content

- New to Flamegraphs?

THE
l- LINUX
FOUNDATION

Catering for EHR systems requires diligence

- ISV mandates application architecture and core systems behavior.

/ Epic \ - Provisioning and Scaling are usually in-elastic, systems rarely get smaller, and
they live-on for a very long time (decades).
MEDITECH - End-users of all abilities and tolerance levels touch system 24/7.
ChipSoft - Some use cases may be life-critical, tolerance for system unavailability and poor

performance is close to zero.

Allscripts - Many users simply can’t “come back later” when system is working better

eClinical\Works - All comes together to keep Infrastructure layer “on its toes”.
kﬂ InterSystemS'/ - ‘It takes the whole village™ across both KVM and the broader ecosystem to
optimize and sustain performance.
- = = I T — 3
& = § X 1] i
.
Availability Security Block Compute Data File Object Backup NFV
< Services Services Protection Services Services >
AQS. L. HCL R Pricm Eilas ﬁhjnr\fe Mine Flow
; ; ; _ THE
Nutanix Acropolis Hypervisor (AHV) - Powered by KVM L LINUX
FOUNDATION

Diving In
A Practical Example

Practical Example

Reported Scaling Issue on EHR* App Layer

- Windows based “front end” EHR workload

- ISV Benchmark reported degradation in scaling vs competitive
platform

- Nutanix AHV 8.0 pre-GA, Kernel 5.10.y based
- Intel Ice Lake hardware

- Particular EHR App “front end” is particularly latency sensitive to
CPU perf

- Benchmark loads up synthetic users with increasing density/core
and measures response time (think load-runner esque), has SLA
“fault” line where response time will be unacceptable.

- Multiple Windows VM’s/host, lightly oversubscribed

THE

L LINUX

FOUNDATION

Diving In: Reported Competitive Scaling Issue

What’s wrong with this picture?

rcu..
kv, |

kvm_..
I | kvmivens _apic_.. @
I | _apic_acc.. [KumBIFGEGEIVE
kvm_irg_delivery_to_apic
]

|
|
|
kvm_lapic_reg_write |
t

\
i B
1 8 kvm_hv_set_msr_common l
[| kvm_set_msr_common § B l
mil vmx_set_msr R | I |
B0 | kmisetmsraignoredscheck s (@O 8 BN | BB | x86_virt_spec_ctr |
B0 [injec. Bkvm_emulate wrmsr jomsivel kel @
vcpu_enter_guest
kvm_arch_vcpu_ioctl_run
kvm_vcpu_ioctl
__x64_sys_ioctl
do_syscall_64
entry_SYSCALL_64_after_hwframe
__GI___ioctl
. . . THE
New to FlameGraphs? See copy-paste example in Slide Appendix L LINUX
FOUNDATION

Diving In: Reported Competitive Scaling Issue

What’s wrong with this picture?

#1: All these emulated
handling for IPls are not
taking any fast paths, and
incurs slowness from all
other issues highlighted,
causing interrupt handling to
be less than ideal

bl

#2: Each pass through

vepu_run() is very #3: “Mystery” XSAVE
expensive, but more so handling overhead for both
even without any of its func load guest and host states
calls

/

#4: Spending a hilarious
amount of time on

speculation control THE
P |- LINUX

FOUNDATION

Diving In: Reported Competitive Scaling Issue

Issue 1 and 2 Summar

1. IPIl handling overhead, Windows Specific!

a. HyperV SynIC enabled with AutoEOI (default), which disables hardware (Intel
APICv) handling

b. Even with (new) hv-apicv, Windows exits with APIC_WRITE rather than
MSR_WRITE. APIC_WRITE’s do not have exit fastpath handler

c. Fix 1a: Switch to hv-apicv
d. Fix 1b: Introduce new APIC_WRITE fastpath handler

2. vmx_vcpu_run() overhead (~10% FG Samples)

a. Guest enabled elBRS, each exit spams rdmsr SPEC_CTRL (expensive!),
caused by MSR bitmap interception from elBRS enablement

b. Also, host debugctl msr update spamming unnecessary (expensive!)
c. Fix 2a: Fixup enablement for eIBRS so kernel does not disable interception

d. Fix 2b: Revert offending commit for debugctl msr issue L LINUX

FOUNDATION

Diving In: Reported Competitive Scaling Issue

Issue 3 and 4 Summar

1. XSAVE overhead (~1% FG Samples)

a. Due to Guest vs Host xfeatures state mismatch, each entry/exit spams xsetbv
(expensive!)

b. Mismatch is caused by control plane feature auto-masking MPX and PKU
away from guest.

c. Fix 3: WIP - Fixup early initialization code in FPU to properly compile out MPX
and PKU

2. x86 virt_spec_ctrl overhead (~8% FG Samples)

a. Due to Guest vs Host SPEC_CTRL mismatch, each entry/exit spams wrmsr
SPEC_CTRL

b. wrmsrto SPEC_CTRL stalls pipeline completely (very expensive)

c. Mismatch is (unintentionally?) forced by gemu seccomp config vs kernel
spectre_v2=auto

d. Fix 4: Backport default change in bugs.c to depessmize seccomp

THE

L LINUX

FOUNDATION

Diving In
Optimization Results

Optimization Results: Improved Flamegraph

I I | | |
N |
[
[N
| | B
I tryto_..
I reuwait..
I N | kvm_vcp..
| | \vmx_deliv.. | __apic_accept._irq
) __apic_acce.. |
| | 3 | kvm_irq_delivery_to_apic |
|18 =] I kvm_apic_send_ipi |
| N (=0 | 8 | kvm_lapic_reg_write I
B N EN | . N
—:] [° NN L= | i i [|) handle_apic_write Pk.. kvm.. 1
i ha (K kvm_hv_pro.. |swit.. ')
vcpu_enter_guest
kvm_arch_vcpu_ioctl_run
kvm_vcpu_ioctl
__x64_sys_ioctl
__noinstr_text_start
entry_SYSCALL_64_after_hwframe
__GI___ioctl
THE
I- LINUX
FOUNDATION

Optimization Results: Improved Flamegraph

#3: xsave overhead still

#1a: Switched on present, but issue now
hv-apicv (hv-avic), IPls understood and fix
now accelerated inflight

~ ~
/ \ #4: SPEC_CTRL

overhead gone,

#2a/b: Suppressed per-exit rdmsr for #1b: added exit fastpath backported bugs.c
SPEC_CTRL on elBRS systems and for APIC_WRITE seccomp fix from
reverted backport causing upstream THE
host_debugctrimsr to spam restore L. !alﬁ%&%%&

Optimization Results: Improved EHR App Response Time

CPU Time vs Core Density

== Previous —* Current

2500

2000

1500

1000

500

EHR App Response Time

0 THE

|
0.0 25 5.0 75 10.0 LINUX

mmil B FOUNDATION

Optimization Results: Improved EHR App Response Time

CPU Time vs Core Density

. . Previous — curent Slope of post-SLA ceiling less steep
Response time SLA ceiling for

particular app/benchmark \

(O]
S \
S T R R . N R R R A D A
(O]
[72]
C
o
Q.
(7]
i
o Core KVM improvements lend
< additional ~14% density before
x SLA fault
T
m
B THE
LINUX

mil B FOUNDATION

Optimization Results: Improved LoginVSI Density

Compared new kernel optimized to previous release

VMs: ~320 VMs/host
Windows 10 - 21H2 - updated July 2022, Office 2019 - x64
2 vCPU, 4 GB memory, LoginVSI 4.1

Hardware: Single node

CPU: 2x Intel(R) Xeon(R) Gold 6342 CPU @ 2.8GHz (Ice Lake)

MEM: 2TB

Disk: 6x 1.9TB SSD

AOS 6.5.1 with AHV 7 (5.4.y) vs AHV 8 (5.10.y with optimizations, minus hv-apicv)

THE

L LINUX

FOUNDATION

Optimization Results: Improved LoginVSI Density

VSImax v4

Response time SLA ceiling for AHV 7 (5.4.y) max reached

LoginVSI benchmark, called VSIMax

N

3000—
2400—
1800—
E
é.
2
3
o
1200—
600 —

AHV 8 (5.10.y) max NOT reached /

THE

LINUX

L FOUNDATION

T T T T 1
64 128 192 256 320

Active Sessions

Optimization Results: Improved LoginVSI Density

VSlbase (initial avg. application response time (ms) - lower is better)

THRAO
L LINUX

FOUNDATION

Optimization Results: Improved LoginVSI Density

VSlbase (initial avg. application response time (ms) - lower is better)

AHV 7

THE

|_ LINUX

FOUNDATION

Optimization Results: Improved LoginVSI Density

Filtering LoginVSI Max upper threshold, like EHR did??

VSImax v4

3000 —

2400—

0| Use Fixed SLA for both datasets

g
= e
5
7 =
-4 -
1200 g

600 —

THE

L LINUX

FOUNDATION

T T T T 1
64 128 192 256 320

Optimization Results: Improved LoginVSI Density

What if we filter LoginVSI| Max upper threshold?

VSImax (Density - higher is better)

A V-] ~ao
A v O L0

THE
100 150 200 250 E{e) I LINUX
L FOUNDATION

Optimization Results: Improved LoginVSI Density

What if we filter LoginVSI| Max upper threshold?

VSIimax (Density - higher is better)

THE
‘I:: +l LINUX
FOUNDATION

Zooming Out
Related Ecosystem Enhancements

Optimizations Found Along the Way

Related Ecosystem Enhancements

- Open vSwitch
- Thundering Herd with handler* wakeups
- Netlink stats gathering overhead suppression

- Linux VirtlO Driver
- Enabling proper virtio_scsi MQ handling in RHEL 7.x

- Windows VirtlO Driver
- Enabling large (256K+) 10 sizes
- VirtlO spec change: Indirect descriptor table size

THE
|- I LINUX
FOUNDATION

Open vSwitch: thundering herd from handler* wakeups

Problem: Threading code in OVS [1] causes handler* threads to wake up concurrently in a thundering herd.

Result: Subtle nuance for CPU-sensitive EHR workloads is the herd may kick vCPUs off-cpu that recently
went into halt-polling, due to single_task_running() exit condition on kvm_vcpu_can_poll().

Issue: Reduction in file descriptors [1], allowed kernel to wake up more/all threads at once. Stumbled upon
this using Google SchedViz (see next slide), was existing issue in RHBZ 1834444,

Fix: Backported Kernel [2] and OVS [3] series to add per-CPU upcall dispatch. Note: Both sides are
required or per-cpu upcall dispatch will not work.

Improvement: 28x reduction in wakeups, reduction in application tail latency due to more effective halt
polling.

[1] 69c¢51582Ff78 (“dpif-netlink: don't allocate per thread netlink sockets”) - OVS 2.11+
[2] b83d23a2a38b (“openvswitch: Introduce per-cpu upcall dispatch”) - Kernel 5.15+
[3] ble517bd2f81 (“dpif-netlink: Introduce per-cpu upcall dispatch.”) - OVS 2.16+ pa

L LINUX

FOUNDATION

https://bugzilla.redhat.com/show_bug.cgi?id=1834444
https://github.com/openvswitch/ovs/commit/69c51582ff786a68fc325c1c50624715482bc460
https://github.com/torvalds/linux/commit/b83d23a2a38b1770da0491257ae81d52307f7816
https://github.com/openvswitch/ovs/commit/b1e517bd2f818fc7c0cd43ee0b67db4274e6b972

Open vSwitch: thundering herd from handler* wakeups
-

= Scheduling collection by 1ocal user on target on Wednesday, May 25, 2022 at 11:57:07 AM GMT-04:00 P i E= 3 ©)

Idle While Overl:
Wall Time: 1.376 msec 0.028% | Per CPU Time: 1.414 msec 0.028% | Per Thread Time: 1.414 msec 0.028% | CPU Utilization Fraction: 11.04%

Threads Events

PID|C b Core 0
Core |
Core2
Core 3
[
Core §
Core 8
[
Core 10
Core 11
Core 12
—— e Core 13
Core 16
FQ Core 17
Core 18
Core 19
[
Core 21
Core 24
Core 25
Core 26
Core 27
Core 28
Core 29
[
Core |
Core2
Core 3
[
Core 5
Core 8
Core 9
Core 10
Core 11
Core 12
Core 13
Core 16
Core 17
Core 18
Core 19
et 11§ Core 20
Core 21
Core 24
Core 25
Core 26
Core 27
Core 28
Core 29

handler

Sleeping Unkno

handler3 47.594 uys 482.793 ps 5.001s NUMA.
handler4 45265 us 453.983 ps 5.001s
handler8 34.662 us 279.645 ps 5.001s

handler6é 28.674 uys 539.949 s 5.001s

00000 ¢

handler7 40.894 us 321.474 ps 5.001s
handler38 36.271 ps 92.651 ps 5.001s
handler44 28.412 ps 86.327 ps 5.002 s
handler1 33.51 ps 1.555 ms 5.000 s

NUMA 1

handler39 31.172pus 144.428 ps 5.001s

handler40 46.861 ps 85.559 s 5.001 s

handler41 31.577 ps 86.31 ps 5.002 s

handlerd 23.421ps 292.186ps 5.001s

handler42 30.191 ps 79.171 ps 5.002 s

Open vSwitch: thundering herd from handler* wakeups

Filter PID | Command 3
Threads Events R
handler e
H . Filter PID | Command
e ore Ixu s a eu S © b comman 177 12 aa72ms 10381ms 6002m ons
" ~ omman Wakeups Migrations Waiting Running Sleeping Unknown handler
= . (#3007 handiert 17 0 3351us 1555ms 5.000s ons | ® D Command a7 2 169.414 s i ons
e r I x u s a e u S ¥~ Wakeups Migrations Waiting Running Sleeping Unknown
. (® 3008 handler2 16 0 3639ps 837.78ps 5.001s ons
® (® 3022 handler7 1 0 1671ps 91603ps 5002 ons
. . 3009 handler3 23 0 47594ps 482793ps 5.001s ons
R I . 2 X r tl n I n (® 3030 handierta 4 0 17.194ps 539.725ps 5001s ons
M @ 3011 handler4 22 0 45265 us 453.983 ps 5.001s Ons
(® 3031 handlerts 2 0 9658ps 398321ps 5.001s ons
® 3012 handiers 20 0 28674ps 5390.949ps 5.001s ons
a e u pS (® 3082 handierts 1 0 2135ps 97.363ps 5.002s ons
H
#3013 handier? 19 0 40894pus 321.474ps 5.001s 0 | @ 2083 handert7) T e TiEbie G0Es oms
Tri Vi a I re rod u Cti 0 n fro m 5 @ 3014 handlers 2 0 34662ps 279645us 5.001s Ons | (3 3039 handier23 1 0 1687ps 154528ps 5.002s ons
p ® 3015 handlerd 20 0 :eape 220860 EOME Ons | () 3048 handlers2 1 0 3856ps 98076 50025 ons
.
second measurement during O oedn B0 s v W On O ks 1 0 e me s o
. @ 3017 handlertt 16 0 35841ps 72613ps 5.002s ons | () 3058 handlerd2 1 0 2566ps 329.227ps 5.001s ons
Stea d y State 1 X V M re a d I n (@ 3018 handlert2 16 0 46513ps 105052ps 5.001s ons | (3 3061 handleras 4 0 7667ps 501.493ps 5001s ons
)

@ 3019 handler13 16 0 31.873ps 74722ps 5.002s ons @ 3066 handler50 1 0 352ps 156.804ps 5.002s Ons
fro l I l l I I e l I I 0 ry Ca Ch e WO rkl Oa d y @ 3020 handler14 16 0 35754ps 69.838ps 5.002s ons | @ 3067 handierst 12 0 62389ps 2.982ms 4.999s Ons
V e r I O W n e tW O rk a CtiV it @ 3021 handlerts 16 0 206529us 91888ps 5001s ons | @ 3071 nandierss 1 0 4534ps 120766 50025 Ons

y y' (® 3022 handlerte 16 1 33814ps 160321ps 5.001s ons | B 9078 handiers? 3 0. S8e2ps 200588 50018 Ons
. . g
Problem was si gn ificantl Y WOISe © s s 0 mowm ot sos ons | © %07 e 10 ssew worm swes om
3088 handler72 3 1 4738ps 358541ps 5.001s ons
. . . (® 3024 handier1s 16 0 48286ps 109.268ps 5.001s ons | @ 3 a
3089 handler73 3 0 654ps 219551ps 5001s ons
d u rl n g a Ct'V I ty- (® 3025 handler1o 16 1 499.28ps 107.458ps 5.001s ons g
3090 handler74 1 0 11414ps 202397ps 5001s ons
(® 3026 handier20 16 0 35757ps 11858ps 5.001s ons
. H (® 10602 dous_handler 5 0 13799ps 85.15ps 5.002s ons
O e 0 n u I I I e rS I n C u e (® 3027 handler2t 16 1 26182ps 88.445ps 5.002s ons
.
k f d b h d | @ 3028 handler22 16 0 33.782 ps 68.877 us 5.002 s Ons
Wa e u pS ro I I I u S a n e r (® 3029 handler23 16 0 46553us 94739ps 5.001s ons

(® 3030 handler24 16 0 35858us 68281ps 5.002s ons

(® 3031 handier2s 16 0 38954ps 69.057ps 5.002s ons

(® 3032 handler26 16 0 35.087ps 97.508ps 5.001s ons

Items per page: 25 1-250f72 > >l Items per page: 25 1-190f 19

OVS: netlink stats gathering overhead

Problem: OVS uses netlink to communicate with kernel. By default, for any netlink request, kernel

gathers a bunch-o-stats to fill in response struct; however, the netlink request may not actually use said
stats.

Result: ovs-vswitchd daemon constantly on-CPU, stealing cycles from CPU-sensitive EHR VMs.
Issue: Netlink call time dominated by the kernel-side internal stats gathering mechanism, specifically:
inet6 fill link af <<< 42.2% of 0OVS’ bridge run() samples
inet6 fill ifla6_attrs
__snmp6_fill stats64

Fix: Patch [1] OVS to hint to kernel that certain netlink calls do not require stats gathering and backport
[2] kernel fix to make the remaining stats gathering more efficient.

Improvement: Reduces amount of CPU samples during bootstorm in bridge_run() from 11.3 to 3.4%

[1] c@ed53f6dild (“netdev-linux: Skip some internal kernel stats gathering”)

[2] 59f@9ae8fac4 (“net: snmp: inline snmp_get cpu_field()”) - Kernel 5.16+ L |T_H|ENUX

FOUNDATION

https://github.com/openvswitch/ovs/commit/c0e053f6d11d5821dd5a7ed753fbecc266bf4050
https://github.com/torvalds/linux/commit/59f09ae8fac4a990070fc6bdc889d0e0118664ea

OVS: netlink stats gathering overhead - Before

snmp_get_cpu_field
__snmpé6_fill_stats64.isra.0 [|tun

nl_fill_ifinfo

] rtnetlink_rcv_msg
| genl_rcv
netlink.. e
netlink_.. f netlink_sendmsg
sock_se.. = sock_sendmsg

= | sys_sendmsg

netlink_ygs |
__sys_sendmsg |
___noinstr_text_start

| | e I [libpthread-2.17.s9

| nl_transag [libpthread-.. |

nl_sock_transact_multiple.part.0 nl_sock_tran..
dp'ii:po | = h ! ?“' nl_sock_transact nléransﬁct
port_qudfy.. e etdev.get carrier I ||| ov.. | (MIErANSACE i netdev_linux..
[| port_dughp. | |I¥@8 netdev_linux_update_via_netlink
| ofproto_jbg

> J|type_run netdev_linux_update_flags
') bridge_dFlf ofproto rtn ~ ofproto..

do_update_flags netdev_get_c.

bridge_run__ | iface_refresh_netdev_status

main
__libc_start_main
ovs-vswitchd

all

8

L]]
_c.. HiINA
8]

]
I

L
I

Matched 42 2% qu

OATION

netlink stats gathering overhead - After

0
ovs.. |
ovS_.. N
OVS_V.. | il
genl_ (]] g rt. 0
] 0 [t
(] rtnetl..
| netli []
| netlink.. 1] @
netlink.. (1] !]] netli.. m
sock_s.. _p sock_.. | [|
J— | L [B | B
__sys.. | | Esc] sl __sy.. §] []
_syss. sche. 0 i | __sys. _sys.. il 8
__noinst.. |§ [sche..] BEE | __noi.. § __noi..
ety s. [|} (ol i OE B e enty_. | B
| lbpthre.. — |{ Gomsm W | e 5| WBEEES [ibpth. 0]
| EEsEEE || = D —sv.. _sock.. ,
| nl_sock t. = —x. e |
| nl_transact noi.. sy E '}
| dpif_netlin.. entry_SYS.. netdev_li.. netdev_li.. 1
| dpif_netlink.. __libc_accept netdev_li.. netdev_li.. []
dpif_port_g.. []]
[port_qguery_b.."| [
‘port_dump_n.. imii
[] |

1
G ofproto_port_..

0
0
[0 bridg.. bridge_delete_or.. ~ ofproto_type..

onnme |} .
bridge_reconfigure S 2ot reties_satusil | B |
bridgerun T

main
__libc_start_main
ovs-vswitchd
all
Matched: 9.4% 'ux

s ll FOUNDATION

Linux VirtlO: Fixing virti

o_scsi MQ on RHEL 7.x

Problem: Setting scsi_mod.use_blk_mqg=y not sufficient to enable MQ on virtio-scsi MQ devices only on RHEL 7.x

Result: Broken load balancing to vhost-user-scsi backend
[root@host ~]# top

PID USER PR NI VIRT RES SHR S %CPU
159638 gemu 20 0 64.2g 55m 16m S 1376.
23920 gemu 20 0 48.1g 38m 10m S 1036.
23932 gemu 20 0 8192g 21m 1540 S 95.9
[root@host ~]# top -H -b -n 1 |grep frodo

23932 gemu 20 0 8192g 21m 1540 S 0.0
23933 gemu 20 0 8192g 21m 1540 S 0.9
23934 gemu 20 0 8192g 21m 1540 R 96.2

, poor EHR max scalability

%MEM TIME+ COMMAND
0 0.0 18216:38 gemu-kvm <<< Storage Controller
1 0.0 905:30.17 gemu-kvm <<< EHR Benchmark

0.0 118:21.33 frodo <<< Vvhost-user-scsi

0.0 0:00.45 frodo <<< control thread
0.0 21:35.46 frodo <<< wke
0.0 28:38.67 frodo <<< wkl: all IO to single queue

Fix: Reported RH BZ 1752305, Fixed on RH Errata RHSA-2020:1016 (RHEL 7.8+, kernel-3.10.0.1127.el7+), RHEL kernel

source was missing ccbedf117f01 ("virtio_scsi: support multi hw queue of blk-mq")

https://bugzilla.redhat.com/show_bug.cgi?id=1752305
https://access.redhat.com/errata/RHSA-2020:1016
https://github.com/torvalds/linux/commit/ccbedf117f015d4f415130069b47d63c359bc110

Windows VirtlO: large 10 sizes & DB performance

Problem: One EHR vendor reporting DB benchmark stresses large 10 for emulating high volume SQL
DB backup and restore. Poor performance seen during these phases in particular, not consistent with
Linux based reproductions.

Result: Customer go-live issues as benchmark pass is required for vendor sign off.

Issue: Defaults in virtio-win/vioscsi did not allow large contiguous 10s. Multiple attempts [1][2][3] at
resolution didn’t quite meet the mark and in fact caused both even worse performance and BSODs on
our platform.

Fix: Upstreamed our fix [4] for off-by-one and max_sector handling to properly align 10 sizes.

Improvement: Hit 700GbE line speed during backup benchmark. Restore benchmark is smooth now.

[1] 62e452b94b52 (“[vioscsi] Bug 1787022 - Windows virtio-scsi driver performs poorly *)
[2] c62a8a2c7bf7 (“vioscsi: Increasing max phys breaks to 512”)

[3] 8a6ae70e2c7b (“[vioscsi] 1limit NumberOfPhysicalBreaks and MaximumTransferlLength”)

[4] 2c64f2af4lbb (“vioscsi: fix MaximumTransferLength off-by-one and max_sectors handling”) - source tag mm241 and
higher, fedora virtio-win build 221 and higher THE

L LINUX

FOUNDATION

https://github.com/virtio-win/kvm-guest-drivers-windows/commit/62e452b94b5277775f7bee7a0ec1f6148f8a1811
https://github.com/virtio-win/kvm-guest-drivers-windows/commit/c62a8a2c7bf73541fcfd6bc43bcf85147abf2620
https://github.com/virtio-win/kvm-guest-drivers-windows/commit/8a6ae70e2c7b3e2be825d2195999e42fa028cad9
https://github.com/virtio-win/kvm-guest-drivers-windows/commit/2c64f2af41bb2dc959158bab3d10bdcd7e3cfcbb
https://github.com/virtio-win/kvm-guest-drivers-windows/releases/tag/mm241
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/archive-virtio/virtio-win-0.1.221-1/

Windows VirtlO: large 10 sizes & DB performance

1MB 1O read Backup

Total IOPs & Thr |
hitting 100 GbE Line Olalions & Throughput

limits
140000 \
100000 | 912K 1O write

Restore t-put 8,000.00 ¢
nice and flat - -

VUX

IDATION

Windows VirtlO: large 10 sizes ... the catch?!

Doing this actually should have required a VirtlO Spec Change!

VirtlO-win vioscsi driver violates VirtlO spec for maximum indirect
descriptor size.

Windows 1MB IO takes 4K PAGE_SIZE * 256 SGL

256 SGL Indirect Desc Table Size should not be possible with
VirtlO Spec, and default 128-2 ring size.

This surprise spec change broke our virtio-scsi-user implementation
(we fixed it, at the cost of more memory allocation, matching QEMU)

Upstream Status: Pending VirtlO spec change
PR #122 Allow indirect descriptor tables to exceed the queue size

THE

L LINUX

FOUNDATION

https://github.com/oasis-tcs/virtio-spec/issues/122

Appendix

Appendix
The Under the Covers Details for
Debugging Example

Issue 1: Windows hv-apicv and APIC_WRITE fastpath

Problem: By default, Kernel/QEMU does not enable Intel vVAPIC when base Windows enlightenments are
enabled (e.g. hv-stimer, hv-synic, hv-vapic), deferring instead to Hyper-V’s Synthetic Interrupt
Controller. Even when hv-apicv enabled (not to be confused with hv-vapic), kernel still will not handle them
in the fast path if the guest has less than 240 vCPUs.

Result: Without hv-apicv, Interrupts are emulated and handled by the kvm_emulate_wrmsr path, which does
not live in the vmx_exit_handlers_fastpath(). With hv-apicv, IPI's are accelerated and trap-like; however,
they are still not handled in exit fastpath, as EXIT_REASON is APIC_WRITE. Note: See Vitaly’s talk Emulating
Hyper-\V in 2022 for more details on hv-apicv (aka hv-avic).

Fix: Enabled hv-apicv + add fastpath for EXIT_REASON_APIC_WRITE in vmx_exit_handlers_fastpath().
Note: There are Libvirt enablement issues (no hv-apicv support yet).
Note: Need to upstream APIC_WRITE fastpath kernel patch.

THE

L LINUX

FOUNDATION

https://sched.co/15jK8
https://sched.co/15jK8

Issue 1: Windows hv-apicv and APIC_WRITE fastpath

arch/x86/kvm/vmx/vmx. c

static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
switch (to_vmx(vcpu)->exit reason.basic) {
case EXIT REASON MSR WRITE: <<< Handles Linux + Large Windows VMs
return handle_ fastpath_set _msr_irqoff(vcpu);
case EXIT_REASON_APIC_WRITE: <<< Handles “Small” Windows VMs
if (kvm_vcpu_apicv_active(vcpu)) {
handle_apic_write(vcpu);
return EXIT_FASTPATH_EXIT_HANDLED;
} else {
return EXIT_FASTPATH_NONE;

+ + + + + + +

}
case EXIT_REASON_PREEMPTION_TIMER:

return handle_ fastpath_preemption_timer(vcpu); THE
L LINUX

FOUNDATION

default:

Issue 2: vmx_vcpu _run SPEC_CTRL rdmsr overhead

Problem: Guests that use eIBRS write to SPEC_CTRL MSR 1-2 times on boot, then never again;
however, kernel disables SPEC_CTRL interception in MSR bitmap unilaterally, giving guest direct access
to MSR. This is done to avoid an exit on every IBRS write, which was key for IBRS performance, but is
moot for elBRS “one-and-done” enablement pattern.

Result: When interception is disabled, kernel must rdmsr SPEC_CTRL MSR on every single exit, which
is roughly 40-50% of the “flat top” in vmx_vcpu_run(). Note, this happens within
vmx_vcpu_enter_exit() as part of the guest return, but prior to exit fastpath, so cycles spent here delay
handling IPI delivery.

Fix: For guests that enable eIBRS, do not disable interception in MSR bitmap [1], negating need to do
rdmsr.

[1] [PATCH] [v3] KVM: VMX: do not disable interception for MSR_IA32 SPEC_CTRL on eIBRS

THE

L LINUX

FOUNDATION

https://patchwork.kernel.org/project/kvm/patch/20220520204115.67580-1-jon@nutanix.com/

Issue 2: vmx_vcpu_run and debugctl regression

Problem: debugctl value is cached on vCPU load, as it architecturally cleared on vmexit and would need
to be restored if set by host prior to load. On many/most systems, debugctl isn’t set during steady state;
however, a commit [1] in 5.17, backported through stable to 5.10, turns this on constantly.

Result: 30-40% of the “flat top” in vmx_vcpu_run() is due to constantly resetting debugctl msr from
cached value. Note, this happens immediately after vmx_vcpu_enter_exit() returns, but prior to exit
fastpath, so cycles spent here delay handling IPI delivery.

Fix: For us, reverting was the cleanest route, as we aren’t exposing the system to the use cases outlined
in the commit.

[1] 201994f5e5c7 (“x86/perf: Default set FREEZE_ON_SMI for all”)

THE

L LINUX

FOUNDATION

https://github.com/torvalds/linux/commit/a01994f5e5c79d3a35e5e8cf4252c7f2147323c3

Issue 3: ‘Mystery’ XSAVE overhead, Demystified

Problem: Nutanix control plane auto masks CPU features to handle migration compatibility, including a
deny list. Deny list includes MPX and PKU, which influence xstate features. We need to mask it to maintain
migration compatibility across Ice Lake and non-Ice Lake. PKU masked due to handling bug (long ago).

Result: Masking XSAVE-able features changes the XSAVE mask, so every single pass through
kvm_load_{guest|host} xsave state() spams xsetbv, delaying time-to-enter and time-to-IPI
handling.

Fix: Fixup host side mask calculation in very early code to fully compile out MPX and PKU from host
kernel to make xstate feature masks match. This also gets rid of rdpkru/wrpkru from *xsave state()
calls too.

Note: Need to upstream patch series for review.

Note: See Soham and Shivam’s talk on CPU Feature Management: Lessons from the Trenches for more
discussion on more learnings in this space.

THE

L LINUX

FOUNDATION

https://sched.co/15jJw

Issue 3: Mismatched xstate features: Host XSAVE

Host XSAVE state loads very early, and even compiling out features doesn’t change early code masking.

.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
ormat.

O O 0O OO0 OOPTOOOPTOOTOOPTODOOOOOO

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
.F

x86/fpu:
x86/fpu:
x86/fpu:
x86/fpu:
x86/fpu:
x86/fpu:
x86/fpu:
x86/fpu:
x86/fpu:
x86/fpu:
x86/fpu:
x86/fpu:
x86/fpu:
x86/fpu:
x86/fpu:
x86/fpu:
x86/fpu:

Supporting XSAVE
Supporting XSAVE
Supporting XSAVE
Supporting XSAVE
Supporting XSAVE
Supporting XSAVE
Supporting XSAVE
Supporting XSAVE
Supporting XSAVE

xstate offset[2]:
xstate offset[3]:
xstate offset[4]:
xstate offset[5]:
xstate offset[6]:
xstate offset[7]:
xstate offset[9]:

feature
feature
feature
feature
feature
feature
feature
feature
feature
576,
832,
896,
960,
1024,
1536,
2560,

Enabled xstate features

Ox001: 'x87 floating point registers'
0x002: 'SSE registers'

0x004: 'AVX registers'

0x008: 'MPX bounds registers'

0x010: 'MPX CSR'

0x020: 'AVX-512 opmask'

0x040: 'AVX-512 Hi256'

0x080: 'AVX-512 ZMM Hi256'

0x200: 'Protection Keys User registers'
xstate sizes[2]:
xstate sizes[3]:
xstate sizes[4]:
xstate sizes[5]:
xstate sizes[6]:
xstate sizes[7]:
xstatefsizes[9]:

ox2ff, Jcontext size is 2568 bytes, using 'compacted’

L LINUX

FOUNDATION

Issue 3: Mismatched xstate features: Guest XSAVE

Control Plane automatically masks MPX and PKU feature sets, which are on deny list.

[

Q.

000000]

registers'

[
[

[

[
[

[
[
[
[
[
u

Q.

%)

%)

(ORI)

O OO0

000000]

.000000]

.000000]
.000000]
.000000]

. 000000]
.000000]
. 000000]
.000000]
. 000000 |
'compacted' forma

x86/fpu:

x86/fpu:
x86/fpu:

x86/fpu:
x86/fpu:
x86/fpu:

x86/fpu:
x86/fpu:
x86/fpu:

1[*S*UfE'U**Sfff??"fﬁeef'*Sfaf[
:|Enabled xstate features Oxe7,| context size is 2432 bytes,=mg
L FOUNDATION

x86/fpu
x86/fpu

Supporting XSAVE feature

Supporting XSAVE feature
Supporting XSAVE feature
<<< Missing MPX here

Supporting XSAVE feature
Supporting XSAVE feature
Supporting XSAVE feature
<<< Missing PKU here

xstate offset[2]:
xstate offset[5]:

xstate offset[6]: 896, xstate

0x001:

0Xx002:
0x004 :

0x020:
0x040:
Ox080:

576, xstate_
832, xstate_

'x87 floating point

'SSE registers'
"AVX registers'

"AVX-512 opmask'
"AVX-512 Hi256'
"AVX-512 ZMM_Hi256'

sizes[2]: 256
sizes[5]: 64
_sizes[6]: 512

sizes[7]: 1024

LINUX

Issue 3: Mismatched forever, pain in vcpu_run() loop

arch/x86/kvm/x86.c
void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) { <<« Called before vmx_vcpu_enter_exit()
if (kvm_read cr4 bits(vcpu, X86 CR4 OSXSAVE)) {
if (vcpu->arch.xcr@ != host_xcro) <<< Branch hit: Guest Oxe7 != Host ox2ff

xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr@); <<< Pain on vm enter, delays enter

void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) { <<< Called after vmx_vcpu_enter_exit() returns
if (kvm_read cr4 bits(vcpu, X86 CR4 OSXSAVE)) {
if (vcpu->arch.xcr@ != host_xcro) <<< Branch hit: Guest Oxe7 != Host ox2ff
xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr@); <<< Pain on vm exit, delays exit handling

THE

L LINUX

FOUNDATION

Issue 4: wicked x86 virt_spec ctrl overhead

Problem: In QEMU 2.11+, -sandbox on is enabled by default [1], which turns on seccomp. If KVM host has
CONFIG_SECCOMP=y, all SEECOMP jails enable TIF_SPEC IB and TIF_SSBD, due to spectre _v2=auto
applying to both prctl and seccomp.

Result: Almost always, the guest and host SPEC_CTRL values will not match, resulting in each entry/exit
spamming wrmsr SPEC_CTRL to constantly reset the value. Wrmsr to SPEC_CTRL stalls pipeline completely.

Fix: Backport [2] change in default from 5.16, HUGE tax cut, as host/guest much more likely to match.

[1] RHBZ 1492597 - Enable seccomp by out of the box with QEMU >= 2.11
[2] 2f46993d83ff (“x86: change default to spec_store_bypass_disable=prctl spectre_v2 user=prctl”) 5.16+
(Thank you Andrea Arcangeli !!) THE

L LINUX

FOUNDATION

https://bugzilla.redhat.com/show_bug.cgi?id=1492597
https://github.com/torvalds/linux/commit/2f46993d83ff4abb310ef7b4beced56ba96f0d9d

Issue 4: wicked x86 virt spec ctrl overhead

Host dmesg extract

[4.294333] Spectre V2 : mitigation: Enabling conditional Indirect Branch Prediction Barrier

[4.,294333] Spectre V2 : User space: Mitigation: STIBP yia seccomp and prctl

[4.294335] Speculative Store Bypass: Mitigation: Speculative Store Bypass disabled via prctl and seccomp

Process status of gemu-kvm VM

[root@mauriciod6 ~]# cat /proc/5733/status

Name: gemu-kvm

Seccomp: 2

Seccomp_filters: 1

Speculation_Store_Bypass: thread force mitigated

Overhead via perf top
THE

6.11% [kernel] [k] x86_virt_spec_ctrl <<< BRUTAL! L LINUX
FOUNDATION

Appendix
New to Flamegraphs?

Profiling C/C++: Linux Perf & Flame Graphs

USAGE

 How: Use Linux Perf to sample service (or entire system) and
run through steps to convert to Flame graph svg.

- What: Study flat tops, understand everything with >1%
sample size, diff flame graphs while iterating, use different
on-cpu, off-cpu, different perf trace points like cache misses,
etc (see Flame Graph docs, presos, vids).

« Watch out for [Unknown] frames.

* Note: perf.data output can be used for other things besides
flame graphs, so it is valuable.

THE
L I LINUX
FOUNDATION

http://www.brendangregg.com/flamegraphs.html

Profiling C/C++: Linux Perf & Flame Graphs

PROS

* Very easy to grab in minute(s), provides fantastic insights to what's on-CPU.
- [Easy to understand, Easy to use (searchable).

- Easy to manipulate to show data how you might like, ala different merging.

* Methodology reusable across many languages.

CONS

* Linux perf has a zillion options, easy to get lost on non-important things.
« Requires as much symbolization as possible as it is out of process, so if
3rd party component is on-CPU with no frames or symbols, you're blind.

THE

L LINUX

FOUNDATION

Profiling C/C++: Linux Perf & Flame Graphs

Dependencies
wget https://github.com/brendangregg/FlameGraph/archive/master.zip

unzip master.zip

Grabbing profile

sudo perf record -F 997 -a -g -- sleep 10

sudo perf script -f > example.perf

Massage Data (and merge related stacks as needed)
./FlameGraph-master/stackcollapse-perf.pl example.perf > example.folded
./FlameGraph-master/flamegraph.pl example.folded > example-separate.svg
sed -i 's/CPU_\([©-9]*\)/CPU_merged/g"' example.folded

sed -i 's/handler\([©0-9]*\)/handler-merged/g' example.folded

sed -i 's/revalidator\([0-9]*\)/revalidator-merged/g' example.folded
sed -i 's/vhost-\([0-9]*\)/vhost-merged/g' example.folded
./FlameGraph-master/flamegraph.pl example.folded > example-merged.svg
Viewing profile

scp user@host:example-separate.svg . ## Open in Chrome - original flamegraph

. _ . _ THE
scp user@host:example-merged.svg . ## Open in Chrome - merged flamegraph L LINUX

FOUNDATION

https://github.com/brendangregg/FlameGraph/archive/master.zip

