
Running Kubevirt 
Workloads with No 
Additional Privileges
Luboslav Pivarc @ Red Hat

@twitter



What is coming?

• Kubernetes & Kubevirt crash course
• How is security enforced ?
• What is enforced ?
• Where did we start, where are we now and 

Where are we heading?



What is Kubernetes?

“Open-source system for automating 
deployment, scaling, and management of
Containerized applications.”

Source: https://kubernetes.io/



How does the Kubernetes look like?



Node perspective



What is Kubevirt?

“KubeVirt is a Kubernetes extension that allows 
running traditional VM workloads natively side by 

side with Container workloads.”



Kubevirt Integration



Node perspective



How is security enforced?



Security policies

• Restricted - hardening best practices
• Privileged - allows for known privilege 

escalations



What is restricted?

• Capabilities
• Selinux/AppArmor
• Running as Root
• Privileged containers
• Seccomp
• Privilege Escalation (no_new_privs bit)
• HostPath volumes
• Host Ports



Kubevirt

• Capabilities
• Selinux/AppArmor
• Running as Root
• Privileged containers
• Seccomp
• Privilege Escalation (no_new_privs bit)
• HostPath volumes
• Host Ports



“That's one small step for security”

• First step was to have unprivileged 
networking

• We used NET_ADMIN, NET_RAW, NET_BIND_SERVICE 
because:
– Pod gets IP address
– Containers gets Interface that requires 

configuration
– Configuration of network requires privileges
– Interface IP needs to be exposed to Guest 

(DHCP)



Solution

• Offload network setup to privileged 
component (Virt-handler - privileged container)

• Requires Libvirt “Unmanaged” option
• Existing management tool is losing 

privileges
• NET_BIND_SERVICE stays around



Running as Non-root

“As easy as setting user for workload
 & using Libvirtd in session mode”



Running as any non-root user

• Security policies requires anyuid
• Pre-allocated ranges of uids
• Qemu processes can’t read each others 

disk
• Filesystem permissions are set at build 

time of container images
• Modifying container FS at runtime can 

trigger copy



Solution

• Use “EmptyDir” feature that is just tmpfs 
with relaxed permissions

• Manage the permissions by Kubevirt



Storage for non-root user

• Filesystem/Block Volumes don’t have 
standardized permissions

• Kubernetes provides feature “fsgroup”
– Does not always work
– Restricted by some policies



Solution

• Manage permissions with privileged 
component (Virt-handler - privileged container)



Devices for non-root user

• Kubernetes expose devices through 
device plugins

• Devices are exposed with same 
permissions as on the host
– This lead to inconsistencies depending on the 

setup
– Not usable out-of-box for non-root users most 

of the time



Solution

• Manage permissions with privileged 
component (Virt-handler - privileged container)

• Drawback is that we can only manage 
devices that we know



Capabilities for non-root containers



Solution

• Non-root containers requires file 
capabilities on the executed binary

• Ambient capabilities are the future
– They don’t require changes to image
– Keeps working with no_new_privs bit
– Missing support in Kubernetes



Drawback

“File capabilities require always requesting 
the capabilities for workload, disallowing 
opt-in approach”



SELinux

Keep me enabled!



What's left to do?

• Arbitrary user running workloads
– How does user namespaces affect this?

• Remove custom SELinux policy
– Upstream rules that makes sense for general 

container use cases
– Use alternative API that are not requiring 

privileges
• Upstream support for Ambient capabilities
• Switch to “Restricted first” approach? 



Thank you

You can get in touch with Kubevirt
• Twitter @kubevirt
• Slack kubevirt-dev

https://twitter.com/kubevirt
https://kubernetes.slack.com/messages/kubevirt-dev



