
V0000000

KVM Forum 2022

Emulating Hyper-V in 2022

Vitaly Kuznetsov, Red Hat

1

V0000000

About myself

About

2

▸ Long time KVM contributor, focusing mainly on Hyper-V emulation,
running KVM on Hyper-V, KVM PV features and nested virt.

▸ Newly appointed KVM X86 HYPER-V co-maintainer.

V0000000

Why emulating some other
hypervisor?

Why

3

▸ Make existing [proprietary] operating systems run faster!

▸ … much faster in some cases.

V0000000

How do we know what proprietary
OS need?

How

4

▸ Publicly available Hyper-V Top Level Functional Specification (TLFS):
･ https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/tlfs/tlfs
･ https://github.com/MicrosoftDocs/Virtualization-Documentation

https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/tlfs/tlfs
https://github.com/MicrosoftDocs/Virtualization-Documentation

V0000000

“Legacy” enlightenments
(which I’m not talking about today)

History

5

▸ hv-relaxed
▸ hv-vapic
▸ hv-spinlocks
▸ hv-vpindex
▸ hv-runtime
▸ hy-synic
▸ hv-stimer

▸ hv-reset
▸ hv-frequencies
▸ hv-reenlightenment
▸ hv-tlbflush
▸ hv-ipi
▸ hv-evmcs
▸ hv-stimer-direct

V0000000

Previously given talks:

History

6

▸ DevConf2019/FOSDEM2019: "Enlightening" KVM: Hyper-V emulation
･ https://www.youtube.com/watch?v=kKmsLAlCtQ8
･ https://archive.fosdem.org/2019/schedule/event/vai_enlightening_kvm/

▸ KVM Forum 2018: "Hybrid" Nesting: KVM on Hyper-V by Vitaly Kuznetsov & Tianyu Lan
https://www.youtube.com/watch?v=Fn7mQYObkvs

https://www.youtube.com/watch?v=kKmsLAlCtQ8
https://archive.fosdem.org/2019/schedule/event/vai_enlightening_kvm/
https://www.youtube.com/watch?v=Fn7mQYObkvs

V0000000

(Some) documentation

History

7

▸ QEMU:
https://gitlab.com/qemu-project/qemu/-/blob/master/docs/system/i386/hyperv.rst

https://gitlab.com/qemu-project/qemu/-/blob/master/docs/system/i386/hyperv.rst

V0000000

8

Recently
implemented
enlightenments

V0000000

New feature: hv-avic

New stuff

▸ The enlightenment allows to use Hyper-V SynIC (hv-synic) with hardware APICv/AVIC
enabled
･ Supported since v5.15
･ Windows has to obey to the ‘deprecate AutoEOI’ recommendation
･ “Ancient” Windows versions may ignore the recommendation and keep using

AutoEOI effectively disabling the feature.

9

V0000000

New feature: hv-emsr-bitmap

New stuff

10

▸ Enlightened MSR-Bitmap
･ Nested specific, allows L0 (KVM) and L1 (Hyper-V) hypervisors to collaborate to

avoid unnecessary updates to L2 MSR-Bitmap upon vmexits.
･ Supported for both nVMX (v5.17) and nSVM (v5.18)
･ -700 CPU cycles per Vmexit
･ Also supported for KVM-on-Hyper-V on VMX (since v4.18) and SVM (v5.14)

V0000000

New feature: hv-xmm-input

New stuff

11

▸ Use XMM registers for hypercall input values
･ Allows to pass parameters for certain hypercalls

(HvFlushVirtualAddressSpace{,Ex}, HvFlushVirtualAddressList{,Ex},
HvCallSendSyntheticClusterIpiEx) using XMM registers

･ Supported since v5.14

V0000000

New feature: hv-syndbg

New stuff

12

▸ Hyper-V Synthetic debugger support
･ Enables synthetic debugger interface.
･ Used by Windows Kernel debugger rather than sending packets via

serial/network, adding significant performance boost.
･ Supported since v5.10

V0000000

New feature: hv-enforce-cpuid

New stuff

13

▸ Limit available Hyper-V features to what was presented to the guest in CPUID:
･ By default, KVM allows guests to use ALL currently supported Hyper-V

enlightenments, regardless of what is exposed in guest visible CPUIDs
･ ‘hv-enforce-cpuid’ can be used to limit the guest to use only exposed Hyper-V

enlightenments.
･ Dependencies between enlightenments have to be tracked by VMM.
･ Supported since v5.14

V0000000

14

Enlightenments
currently being
worked on

V0000000

WIP feature: improved hv-tlbflush
and hv-tlbflush-ext

Work in progress

15

▸ Previously, Hyper-V TLB flush hypercalls were handled in ‘all or nothing’ mode
(per-vCPU) by KVM but the interface is actually fine grained, allowing to specify the
particular GVAs to flush:
･ + up to 4096 consequent GFNs per one entry (‘’Extended GVA ranges”)

▸ Current status: v9 on the mailing list
･ https://lore.kernel.org/kvm/20220803134110.397885-1-vkuznets@redhat.com/

▸ Prerequisite for ‘L2 TLB flush’

https://lore.kernel.org/kvm/20220803134110.397885-1-vkuznets@redhat.com/

V0000000

WIP feature: hv-tlbflush-direct

Work in progress

16

▸ Allows L0 (KVM) to directly handle TLB flush hypercalls from L2 guest without the
need to exit to L1 (Hyper-V) hypervisor.

▸ Current status: v9 on the mailing list
･ https://lore.kernel.org/kvm/20220803134110.397885-1-vkuznets@redhat.com/

▸ Supported for KVM on Hyper-V on VMX (v5.10) and SVM (v5.14) for
Windows/Hyper-V guests.

https://lore.kernel.org/kvm/20220803134110.397885-1-vkuznets@redhat.com/

V0000000

WIP feature: updated Enlightened
VMCS

Work in progress

17

▸ Enlightened VMCS v.1 gained support for the following features with 2022 ‘update’:
･ PerfGlobalCtrl
･ EnclsExitingBitmap
･ Tsc Scaling
･ GuestLbrCtl
･ CET
･ SSP

▸ Initial implementation makes it hard to update :-(
▸ Current status: v5 on the mailing list:

･ https://lore.kernel.org/kvm/20220802160756.339464-1-vkuznets@redhat.com/

https://lore.kernel.org/kvm/20220802160756.339464-1-vkuznets@redhat.com/

V0000000

WIP feature: hv-invtsc

Work in progress

18

▸ Normally, architectural ‘invariant TSC’ bit (CPUID.80000007H:EDX[8]) is masked in
CPUID until the guest flibs bit 0 in HV_X64_MSR_TSC_INVARIANT_CONTROL MSR.

▸ With ‘invariant TSC’ bit set, ‘Reenlightenment’ becomes unneeded.
▸ Existing Windows versions are known to work well even when architectural ‘invariant

TSC’ is set from boot.
▸ Status: v1 on the mailing list

･ https://lore.kernel.org/kvm/20220713150532.1012466-1-vkuznets@redhat.com/

https://lore.kernel.org/kvm/20220713150532.1012466-1-vkuznets@redhat.com/

V0000000

19

Enlightenments
described in TLFS
but no work has
started (yet)

V0000000

TODO feature: hv-stimer-unhalted

TODO

20

▸ Synthetic Time-Unhalted Timer MSRs:
･ “Unlike regular synthetic timers that accumulate time when the guest has halted

(ie: gone idle), the Synthetic Time-Unhalted Timer accumulates time only while
the guest is not halted”.

･ Can only send interrupts (no Vmbus messages).

V0000000

TODO feature: hv-npiep

TODO

21

▸ “Non-Privileged Instruction Execution Prevention”:
･ Block the execution of the SIDT, SGDT, SLDT, and STR instructions by user mode.
･ Similar to the already present UMIP emulation in KVM.

V0000000

TODO feature: hv-tlbflush and
hv-tlbflush-direct further improvements

TODO

22

▸ “KVM: x86: hyper-v: Fine-grained TLB flush + L2 TLB flush features” series (on the
mailing list at this moment) introduces KFIFOs for L1 and L2 TLB flushes (queued work
for vCPUs):
･ Makes it possible to analyze ‘AddressSpace’ (CR3) argument (ignored now)
･ Should eliminate some unnecessary TLB flushes.

V0000000

TODO feature: hv-tdp-flush

TODO

23

▸ The HvFlushGuestPhysicalAddressSpace hypercall invalidates cached L2 GPA to GPA
mappings within a second level address space.

▸ The HvFlushGuestPhysicalAddressSpace hypercall invalidates cached GVA / L2 GPA
to GPA mappings within a portion of a second level address space.

▸ Operate on all vCPUs
▸ "Enlightened TLB" on SVM: ASID invalidations “just flush TLB entries derived from first

level address translation”.
▸ Already implemented for KVM on Hyper-V on VMX (v4.19) and SVM (v5.14)

V0000000

TODO feature: free page reporting

TODO

24

▸ HvExtCallMemoryHeatHint hypercall, allows the guest to report ‘cold’ memory to the
host so it can be utilized differently.

▸ Already supported for Linux on Hyper-V guests (v5.13)

V0000000

Elephant in the room: VSM

TODO

25

▸ “Creation and management of new security boundaries within operating system
software”.

▸ Isolates:
･ Memory Access Protections
･ Virtual Processor State
･ Interrupts
･ Overlay Pages

▸ Used by Device Guard, Credential Guard, virtual TPMs and shielded VMs features in
Windows.

V0000000

26

Using Hyper-V
emulation for
something else?

V0000000

KVM-on-KVM: use Hyper-V features?

Bonus

27

▸ KVM doesn’t have [m]any PV features to speed up KVM on KVM workloads but KVM
on Hyper-V and Hyper-V on KVM code already implements quite a few:
･ Enlightened VMCS
･ Enlightened MSR-Bitmap
･ “Direct” (L2) TLB flush
･ EPT/NPT flush

▸ It is already possible to make L0 KVM pretend it’s “genuine Hyper-V” to make L1 KVM
use PV features but maybe we should “glorify” the hack and introduce a KVM PV bit?

V0000000

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

28

Red Hat is the world’s leading provider of enterprise

open source software solutions. Award-winning

support, training, and consulting services make

Red Hat a trusted adviser to the Fortune 500.

Thank you

