
All bark no bite:
vCPU stall detection for KVM guests

sebastianene@google.com

Agenda

● Motivation for adding a new watchdog-like device

● Looking at the existing watchdog infrastructure in Linux Kernel

● Emulating the device in crosvm and state diagram

● Linux kernel frontend driver

● Next steps & lessons learned

33%

49% 43%
42%

34%

59% 52%

The Problem

Why add a new stall detector for KVM guests ?

● No mechanism to detect stalled guests
from the outside world (host):
○ Stalled vCPU threads appear busy (runnable!) to

the host
○ Existing solutions (eg. Chrome OS SMC

watchdog) do not account for stolen time and can
result in spurious resets

● Stolen time represents the time taken from
the guest while the host is busy doing
something else

● Need to handle vCPU hotplug in the guest

Watchdog framework in the Linux Kernel

● The Linux Kernel uses the /dev/watchdog interface to receive userspace
notifications
○ not KVM related but bare-metal behaviour !

● In normal operation, the notification informs the system that everything is
in order
○ This indicates that the userspace daemon is still responsive

● If the notification is not received by the watchdog, the system dumps its
state before rebooting

Why this doesn’t work for guests ?

Because:

● We need to account for stolen time
○ vCPUs are backed by POSIX host threads

which can be scheduled independently
○ What happens if the watchdog expires while

the vCPU is not running?

● Since stolen time is accounted separately
for each vCPU, we require a strong CPU
affinity when we send the ‘heart beat’
notification which cannot be guaranteed by
the userspace
○ E.g. CPU hotplug

What can possibly go wrong ?

1. Guest runs and sends an MMIO notification to the emulated watchdog
device. While writing device registers, it exits the guest on the data abort
path.

1. The VMM on the host receives the notification and re-arms the timer for
the next expiration period.

1. The timer starts decrementing its internal counter, but the guest is not
scheduled to run.

1. The timer expires because the guest wasn’t scheduled in time
=> this triggers a spurious reset !

The guest is unaware that it was not scheduled in time !

A Solution

Proposed solution

- Add a backend driver in CrosVM
that emulates a watchdog-like
device

- Define a set of registers for the
emulated device

- Add a frontend driver in the Linux
Kernel guest that knows how to
interact with the added device

Other services

Guest kernel

crosvm

Host kernel

Hypervisor

Host
userspace

Vcpu emulated
device

Guest userspace

Vcpu stall
detector.ko

CrosVM backend driver

● Every MMIO device is abstracted by the
BusDevice interface

● A device registers on the memory bus by
providing the size and the memory region to
KVM

● MMIO events are dispatched to the registered
device which performs the necessary logic

● A separate crosvm worker thread spins up for
the internal clock

● If the internal clock decrements the internal
counter to 0, the vcpu stall detector fires !

● Extract guest time from /proc/stat to adjust
per-vCPU timer expiration

33%

49% 43%
42%

34%

59% 52%

Linux kernel frontend driver

● Standard misc driver
○ Upstream objection to proposed inclusion in the watchdog

framework

● The stall detector is probed using device-tree

● Deliver the `heart beat` notifications from per-cpu
hrtimers

● Registers for cpu hotplug events
○ Disarm/re-arm the hrtimer accordingly

33%

49% 43%
42%

34%

59% 52%

The states of the vcpu stall detector

Initialisation
● Configure the internal clock register

WDT_REG_CLOCK_FREQ_HZ
● Compute the number of ticks that the counter will

start decrementing and program
WDT_REG_LOAD_CNT

● Enable the stall detector by writing
WDT_REG_STATUS

Normal operation:
● Update the number of ticks in

WDT_REG_LOAD_CNT

Locked state:
● Send a reset vcpu state message to the guest

If the guest stalls it will fail to deliver a heart beat and we
will enter the Locked state.

Next steps & lessons learned

● Report diagnostic messages from the VMM (crosm) before
resetting the guest

● Patch landed upstream after 12 revisions !
https://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc.
git/commit/?h=char-misc-next&id=6c93c6f3bad468ce4b8c84322
7d60fbeb02fd741

● CrosVM changes now merged:
https://chromium-review.googlesource.com/c/crosvm/crosvm/+/
3768290

● Functionality targeting Android U
○ Although nothing Android specific for this mechanism

33%

49% 43%
42%

34%

59% 52%

https://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc.git/commit/?h=char-misc-next&id=6c93c6f3bad468ce4b8c843227d60fbeb02fd741
https://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc.git/commit/?h=char-misc-next&id=6c93c6f3bad468ce4b8c843227d60fbeb02fd741
https://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc.git/commit/?h=char-misc-next&id=6c93c6f3bad468ce4b8c843227d60fbeb02fd741
https://chromium-review.googlesource.com/c/crosvm/crosvm/+/3768290
https://chromium-review.googlesource.com/c/crosvm/crosvm/+/3768290

Thank you !

