
Eugene Rodionov (he/him)
Security Engineer
@vxradius

Will Deacon (he/him)
Software Engineer
@WillDeacon

Fuzzing Host-to-Guest Attack Surface in
Android Protected KVM

Android Virtualization Framework
2022

KVM Forum 2022
Dublin, Ireland

Agenda

● Introduction into Android pKVM
○ Overview & motivation
○ Attack surface

● Virtio driver stack in pKVM
○ Why fuzzing?
○ Challenges with fuzzing virtio front-end drivers

● Fuzzing virtio front-end drivers with LKL
○ Linux Kernel Library for fuzzing
○ Overview of the developed fuzzers for pVM

● Conclusion & Future work

Terminology

● ABL -- Android bootloader
● AVB -- Android verified boot
● AVF -- Android virtualization framework
● GKI -- Generic kernel image
● LKL -- Linux kernel library
● Microdroid -- a Google-provided mini-Android OS that runs in a pVM
● pKVM -- Protected KVM
● pVM -- Protected virtual machine
● PVMFW -- Protected virtual machine firmware
● SMP -- Symmetric multiprocessing

Who we are

Will Deacon
● Active upstream kernel developer, co-maintaining

aarch64 architecture port, locking, atomics, memory
model, TLB, SMMU, …

● Leading the Protected KVM project to enable KVM
on Android

Eugene Rodionov
● Android Red Team security engineer
● Focused on finding & exploiting vulnerabilities

in low-level software in AOSP and Pixel devices

Android Protected
KVM

Android Protected KVM: Overview
● Protected KVM introduces a new security model where the host and the

deprivileged guest VMs mutually distrust each other.

● Mutual distrust:
○ Protected KVM provides security for the guest VMs even if the host kernel is compromised
○ A malicious guest cannot escape into the host (Android) or cannot compromise another guest VM

● Deprivileged guests:
○ Guest VMs don’t need TrustZone privileges and run in non-secure world EL1/EL0

● Protected KVM on Arm64: A Technical Deep Dive by Quentin Perret
● Now You See Me, Now You Don't: Splitting pKVM Into Discrete, Mutually

Exclusive Address Spaces by Marc Zyngier
● All Bark and no Bite: vCPU Stall Detection for KVM Guests by Sebastian Ene
● Panel discussion: KVM-based virtualization contributor Q&A by Will Deacon, et al

Building pillars of pKVM security

Attestation & Sealing
○ Enable external services to attest the

integrity of protected VMs
○ Enable per-VM instance secret data

Secure boot & AVB
○ Enforces authenticity of the

hypervisor and Android kernel
○ Provides attestation services and

protects sealing keys

Host & guest VM software
○ VMM and protected VM payload
○ Process untrusted input

received from the host/guest
respectively

○ Prioritizing host-to-guest
attacks

Hypervisor
○ Enforces isolation of the guests

between each other and from
the host

○ Protects pVM bootloader and
sealing keys.

Virtio attack
surface

Protected KVM hypervisor

Android Protected KVM Attack Surface
Protected VMsAndroid Host Non-Protected VMs

EL0

EL1

EL2

EL3 firmware

Host hypercalls Guest hypercalls

FF-A

Android host kernel (GKI)

CrosVM

Virtualization service

Android virtualization framework (AVF)
application

 pvmfw (u-boot)

 Microdroid bootloader
 (u-boot)

 Guest kernel (GKI)

Microdroid manager &
payload

EL3

Arbitrary kernel

Application 0
(VM)

virtio

virtio

virtio

virtio

Attacking guests via virtio

Host:
virtio back-end

Host <==> guest shared memory

buffer PA buffer len flags next desc

0x7fff..800 0x100 0x0 1

... 2

...

Virtio descriptors

Virtio used buffer

flags

idx

(desc idx, length)

...

Virtio avail buffer

flags

idx

desc idx

...

Guest:
virtio front-end

Attacking guests via virtio

Host:
virtio back-end

Host <==> guest shared memory

buffer PA buffer len flags next desc

0x7fff..800 0x100 0x0 1

... 2

...

Virtio descriptors

Virtio used buffer

flags

idx

(desc idx, length)

...

Virtio avail buffer

flags

idx

desc idx

...

Guest:
virtio front-end

1. Put request in the
virtio queue

Attacking guests via virtio

Host:
virtio back-end

2. Process request
from the queue

3. Put response in the
virtio queue

Host <==> guest shared memory

buffer PA buffer len flags next desc

0x7fff..800 0x100 0x0 1

... 2

...

Virtio descriptors

Virtio used buffer

flags

idx

(desc idx, length)

...

Virtio avail buffer

flags

idx

desc idx

...

Guest:
virtio front-end

1. Put request in the
virtio queue

Attacking guests via virtio

Host:
virtio back-end

2. Process request
from the queue

3. Put response in the
virtio queue

Host <==> guest shared memory

buffer PA buffer len flags next desc

0x7fff..800 0x100 0x0 1

... 2

...

Virtio descriptors

Virtio used buffer

flags

idx

(desc idx, length)

...

Virtio avail buffer

flags

idx

desc idx

...

Guest:
virtio front-end

1. Put request in the
virtio queue

4. Process response
from the virtio queue

Attacking guests via virtio

Host:
virtio back-end

2. Process request
from the queue

3. Put response in the
virtio queue

Host <==> guest shared memory

buffer PA buffer len flags next desc

0xffff..f00 0xffff 0x0 137

... 2

...

Virtio descriptors

Virtio used buffer

flags

idx

(desc idx, length)

...

Virtio avail buffer

flags

idx

desc idx

...

Guest:
virtio front-end

1. Put request in the
virtio queue

4. Process response
from the virtio queue

Protected VM virtio attack surface

Protected Guest VMAndroid Host

Legend

Not included
in u-boot

Backend virtio drivers:
PCI, block, console, etc

PCI bus virtio bus

virtio_pci
(modern & legacy PCI)

virtio_ring
(packed, split & indirect)

virtio_console virtio_blk virtio_fs vmw_vsock device layer

transport layer

bus layer

Shared memory
(ring buffers)

CrosVM VMM

Virtio hardening in Linux mainline & u-boot

Host-to-guest attack
vector isn’t new for
Linux mainline.1

However, this attack
vector is new for
Android and pKVM, in
particular.

Virtio implementation
in u-boot wasn’t
hardened against
malicious host.2

[1] Hardening virtio, https://lwn.net/Articles/865216
[2] virtio: Harden and test vring patch series

https://lwn.net/Articles/865216/
https://patchwork.ozlabs.org/project/uboot/cover/20220516104140.1047229-1-ascull@google.com/

Fuzzing virtio
front-end drivers
in the Linux kernel

Why fuzzing virtio drivers?

● One of the most effective ways to find stability and security issues in
C/C++ code

● Fuzzing provides continuous security

● Fuzzer harness could be potentially reused across GKI/u-boot
○ as long as the same fuzzing engine is used

● Not too many security tools for Linux/Android kernel to choose from:
○ syzkaller1 & syzbot2 is a ‘de-facto standard’ fuzzing tools for kernel

[1] https://github.com/google/syzkaller
[2] https://syzkaller.appspot.com/upstream

https://github.com/google/syzkaller
https://syzkaller.appspot.com/upstream

 Kernel

Virtio fuzzing: challenges

https://github.com/google/syzkaller/blob/master/docs/internals.md

syz-fuzzer syz-executorsshd

syz-manager corpus &
crashes

syscallscoverage info

inputsinvoke

VM managementRPCscp, ssh

VM

virtio front-end &
PCI drivers

shared memory:
ring buffers & PCI

MMIO

fuzzer input
for virtio

virtio back-end
drivers

https://github.com/google/syzkaller/blob/master/docs/internals.md

Host kernel

LKL ApplicationLKL Overview
Linux kernel library (LKL)1 builds Linux kernel
as a user-space library

● Implemented as Linux arch-port

● LKL vs UML

LKL building blocks:
● Host environment API -- portability layer

● Linux kernel code

● LKL syscall API exposed to the user-space
application

Run kernel code without launching a VM:
● kernel unit testing

● fuzzing!2,3

[1] https://github.com/lkl/linux
[2] Xu et al., Fuzzing File Systems via Two-Dimensional Input Space Exploration
[3] https://github.com/atrosinenko/kbdysch

Shared memory
with LKL Threads

LKL syscall API

Linux kernel

Generic
LKL arch

VFS VIRTIO

NET ...

LKL Host environment API

POSIX Win32

Linux WindowsAndroid

user space

kernel space

https://github.com/lkl/linux
https://github.com/atrosinenko/kbdysch

int ret = lkl_start_kernel(&lkl_host_ops, "mem=50M");

lkl_mount_fs("sysfs");

lkl_mount_fs("proc");

lkl_mount_fs("dev");

dev_t dev = makedev(MISC_MAJOR, UHID_MINOR);

int mknod_result = lkl_sys_mknodat(AT_FDCWD, "/dev/uhid",

 S_IFCHR | S_IRUSR | S_IWUSR, dev);

int fd = lkl_sys_open("/dev/uhid", O_RDWR | O_CLOEXEC, 0);

Using LKL from your C program

int ret = lkl_start_kernel(&lkl_host_ops, "mem=50M");

lkl_mount_fs("sysfs");

lkl_mount_fs("proc");

lkl_mount_fs("dev");

dev_t dev = makedev(MISC_MAJOR, UHID_MINOR);

int mknod_result = lkl_sys_mknodat(AT_FDCWD, "/dev/uhid",

 S_IFCHR | S_IRUSR | S_IWUSR, dev);

int fd = lkl_sys_open("/dev/uhid", O_RDWR | O_CLOEXEC, 0);

Using LKL from your C program

int ret = lkl_start_kernel(&lkl_host_ops, "mem=50M");

lkl_mount_fs("sysfs");

lkl_mount_fs("proc");

lkl_mount_fs("dev");

dev_t dev = makedev(MISC_MAJOR, UHID_MINOR);

int mknod_result = lkl_sys_mknodat(AT_FDCWD, "/dev/uhid",

 S_IFCHR | S_IRUSR | S_IWUSR, dev);

int fd = lkl_sys_open("/dev/uhid", O_RDWR | O_CLOEXEC, 0);

Using LKL from your C program

int ret = lkl_start_kernel(&lkl_host_ops, "mem=50M");

lkl_mount_fs("sysfs");

lkl_mount_fs("proc");

lkl_mount_fs("dev");

dev_t dev = makedev(MISC_MAJOR, UHID_MINOR);

int mknod_result = lkl_sys_mknodat(AT_FDCWD, "/dev/uhid",

 S_IFCHR | S_IRUSR | S_IWUSR, dev);

int fd = lkl_sys_open("/dev/uhid", O_RDWR | O_CLOEXEC, 0);

Using LKL from your C program

Anatomy of LKL fuzzer

LKL enables fuzzing Linux kernel code in
user-space

● use in-process fuzzing engine, such as libFuzzer

Advantages:

● high fuzzing performance on x86_64 cores

● lightweight fuzzers (no need to run VMs)

● easy debugging & crash reproducing (i.e. gdb)

● hardware emulation (e.g. PCI)

Limitations:

● no SMP in LKL

● x86_64 vs aarch64 -- potential false positives,
true negatives

libFuzzer-based
fuzzer harness

Linux kernel + KASan +
virtio front-end drivers

virtio shared memory
(ring buffers)

GNU Linux x86_64 user-space process

Fuzzing coverage & crash detection

mutated data

Virtio front-end fuzzers

Kernel under test:

● android13-5.10

virtio_ring:

● fuzzes ring-buffer processing functionality

● handles both split & packed mode

virtio_pci:

● fuzzes PCI configuration space

● LKL arch-specific implementation of PCI bus

● mock-out PCI MMIO in the fuzzer harness

virtio_blk:

● mutates the virtio_blk configuration block

PCI bus virtio bus

virtio_pci
(modern & legacy PCI)

virtio_ring
(packed, split & indirect)

virtio_console virtio_blk virtio_fs vmw_vsock device layer

transport layer

bus layer

Virtio_blk fuzzer finding
int block_read_full_page(struct page *page, get_block_t *get_block)
{

struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];

...
do {

if (buffer_uptodate(bh))
continue;

if (!buffer_mapped(bh)) {
int err = 0;

...
if (buffer_uptodate(bh))

continue;
}

arr[nr++] = bh;

} while (i++, iblock++, (bh = bh->b_this_page) != head);
...

}

OOB write on
stack

static struct buffer_head *create_page_buffers(struct page *page, ...)

{

BUG_ON(!PageLocked(page));

if (!page_has_buffers(page))

create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits), b_state);

return page_buffers(page);

}

Virtio_blk fuzzer finding

● With the block size 0xe5e5e5e5:
○ `inode->i_blkbits == 32`
○ `1 << READ_ONCE(inode->i_blkbits)` is undefined behavior in C
○ `1 << READ_ONCE(inode->i_blkbits) == 1` on x86 architecture

Fuzzing virtio driver stack in u-boot

● Both pvmfw (1st stage) and microdroid bootloader (2nd stage) are
based on u-boot
○ rely on virtio_blk to get boot configuration and virtio_console for debug output

● Fuzzing and ASAN for sandbox patch series enable fuzzing for virtio
front-end drives:
○ works for u-boot in sandbox mode
○ provide coverage-guided libFuzzer-based fuzzing
○ enables AddressSanitizer for the fuzz target

● Findings:
○ virtio: Harden and test vring patch series

https://patchwork.ozlabs.org/project/uboot/cover/20220530100013.3753780-1-ascull@google.com/
https://patchwork.ozlabs.org/project/uboot/cover/20220516104140.1047229-1-ascull@google.com/

Fully controlled OOB write in u-boot
static void detach_buf(struct virtqueue *vq, unsigned int head)
{
 ...
 while (vq->vring.desc[i].flags & nextflag) {
 virtqueue_detach_desc(vq, i); // <== i is OOB
 i = virtio16_to_cpu(vq->vdev, vq->vring.desc[i].next);
 vq->num_free++;
 }
 ...
}

int bounce_buffer_stop(struct bounce_buffer *state)
{
 ...
 // state is OOB and point to a fully attacker-controlled memory
 if (state->flags & GEN_BB_WRITE)
 memcpy(state->user_buffer, state->bounce_buffer, state->len);

 free(state->bounce_buffer);
 return 0;
}

Conclusion

LKL-based virtio fuzzers
 continuously run in Google’s

internal ClusterFuzz engine.

Virtio fuzzing effort
led to identification and

proactive mitigation of multiple
security and stability issues in GKI

and u-boot.

Need your support
in improving fuzzing for

virtualized interfaces.

Future work

● Write more fuzzers targeting virtio front-end and PCI drivers

● Upstreaming LKL to Linux mainline:
○ first attempt in 2015
○ restarted in 2020[1] -- still ongoing to integrate LKL as a submodule of UML

● Currently focusing on upstreaming LKL to Android Common Kernel
mainline:
○ effort to upstream LKL as a separate architecture is WIP
○ share LKL fuzzing work with the open-source community

[1] https://lwn.net/Articles/811575/

https://lwn.net/Articles/811575/

Thank you!

Appendix

Android Protected KVM: Motivation

TrustZone is currently used whenever
host isolation is needed

Historically, a guest VM is completely
controllable by the host

App

Kernel

Hypervisor

App App

Kernel

App

Trusted
App

Trusted OS

Trusted Partition Manager / Hypervisor *

Trusted
App

Trusted
App *

Trusted OS *

Trusted
App *

Firmware / Secure monitor

EL0

EL1

EL2

EL3

N
on

-s
ec

ur
e

w
or

ld
Se

cu
re

 w
or

ld

sEL0

sEL1

sEL2 Increasing privilege

VMM

Host kernel

“World switch”

App App

Guest kernel

AppEL0

EL1

EL2

Prioritizing host-to-guest attacks in pKVM

Guest-to-host VM escapes is
a traditional threat model for
modern VMMs and
hypervisors.

Android Virtualization
Framework in Android 13
doesn’t allow running
arbitrary guest VMs.

LKL KASan details
KASan provides actionable reports for
invalid memory access:

● OOB, user-after-free, double-free

● covers stack, heap and globals

User-space ASan in LKL:

● ASan shadow memory poisoning routines
are invoked in global constructors

● Which might be problematic due to
specifics of globals initialization in Linux
kernel

LKL implements generic KASan:

● -fsanitize=kernel-address

● arch-specific KASan implementation

LKL globals

Stack

0x000...000

0x7ff...fff

0x200...000

0x400...000

KASan shadow memory

LKL kernel heap

reserved virtual
memory

committed virtual
memory

LKL fuzzing coverage

LKL relies on libFuzzer-based fuzzing
code coverage instrumentation.

KCOV is an alternative solution:
● needs additional implementation to

feed the coverage feedback to
libFuzzer engine

Compile Linux
kernel source

Compile LKL host
environment layer

Compile fuzzer
harness

Incremental link
of lkl.o (vmlinux)

Archive lkl.o and
the host

environment layer

Link liblkl.a and the
fuzzer harness

Fuzzer binary

liblkl.a

lkl.o (vmlinux)

-fsanitize=fuzzer-nolink

How to develop an LKL fuzzer

● Identify an interface to fuzz
○ use ‘realistic’ attack surface (i.e. reachable from user-space or from the hardware)

● Enable the kernel feature under test in the kernel config
○ which doesn’t depend on aarch64 features or SMP

● Mock-out low-level interfaces if needed
○ LKL already comes with virtio back-end and arch-specific PCI implementations

● Provide fuzzer harness which sends the fuzzer’s entropy to the target
kernel interface

./virtio_blk-fuzzer -close_fd_mask=3

...

#455 NEW cov: 3662 ft: 6239 corp: 92/178b lim: 4 exec/s: 455 rss: 96Mb L: 2/4 MS: 1

#472 NEW cov: 3662 ft: 6248 corp: 93/180b lim: 4 exec/s: 472 rss: 96Mb L: 2/4 MS: 2

#495 NEW cov: 3662 ft: 6249 corp: 94/184b lim: 4 exec/s: 495 rss: 96Mb L: 4/4 MS: 3

#496 NEW cov: 3662 ft: 6250 corp: 95/185b lim: 4 exec/s: 496 rss: 96Mb L: 1/4 MS: 1

#510 NEW cov: 3662 ft: 6252 corp: 96/188b lim: 4 exec/s: 510 rss: 96Mb L: 3/4 MS: 4

#511 NEW cov: 3662 ft: 6260 corp: 97/190b lim: 4 exec/s: 511 rss: 96Mb L: 2/4 MS: 1

#521 NEW cov: 3662 ft: 6261 corp: 98/194b lim: 4 exec/s: 521 rss: 96Mb L: 4/4 MS: 5

#525 NEW cov: 3662 ft: 6267 corp: 99/198b lim: 4 exec/s: 525 rss: 96Mb L: 4/4 MS: 4

...

Output of virtio_blk fuzzer

