Securing Linux VM boot with AMD SEV measurement

Dov Murik & Hubertus Franke
IBM
Work of many people

• Colleagues from IBM
 – Tobin Feldman-Fitzthum, James Bottomley, Jim Cadden

• edk2/OVMF community

• QEMU community
Confidential Computing setting

- Goal: Protect the guest from the hypervisor
- Cloud Service Provider (untrusted)
- Host machine (untrusted)
- Guest Owner
- Guest VM
- Sensitive guest computing workload
- Encrypted memory
The problem

- Memory encryption is not enough
- Guest Owner has no idea what’s running in the guest
 - Need to verify that the desired workload is indeed running in the guest
AMD SEV

- AMD-SP (Secure Processor) hardware
 - Also called PSP (Platform Secure Processor)
- VM memory is encrypted
- Guest launch measurement
 - Hash of initial guest memory before VM starts
 - Signed by AMD-SP
- Guest secret injection
 - Only at launch, immediately after verifying the measurement
VM boot process with -kernel

- Example QEMU command line:
 `qemu-system-x86_64 -kernel vmlinuz-5.13.0 -initrd initrd.img-5.13.0`

- QEMU reads these files to a fw_cfg “device”
- QEMU loads OVMF into guest memory
- SEV measures memory
- Guest owner approves → Launch!
- Jumps to OVMF
- OVMF reads kernel / initrd / cmdline from fw_cfg
- Loads it into memory
- Jumps to kernel
VM boot process with -kernel

1. Load OVMF to guest memory
2. Measure guest memory
3. Measurement
4. Measurement
5. Read kernel from fw_cfg
6. vmlinuz content
7. Jump to kernel
8. Approved, launch!
9. Launch VM (start OVMF)
10. Read kernel file to fw_cfg
Host attack on boot with -kernel

- Host runs:
 - qemu-system-x86_64 -kernel malicious-5.13.0 ...
- QEMU loads a malicious guest kernel
- QEMU loads OVMF into guest memory
- SEV measures memory
- Guest owner approves → Launch!
- Jumps to OVMF
- OVMF reads the malicious kernel from fw_cfg
- Loads it into memory
- Jumps to malicious kernel
Vulnerability

• AMD-SP hardware measured OVMF
• … but didn’t measure kernel / initrd / cmdline
 – (as they are not part of the initial VM memory)
Solution

• “Extend the measurement”
• Add a list of hashes (of kernel / initrd / cmdline) to the initial guest memory
• AMD-SP will measure OVMF + list of hashes
• OVMF will verify hashes when loading kernel / initrd / cmdline from fw_cfg
<table>
<thead>
<tr>
<th>Hashes GUIDed table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table header GUID</td>
</tr>
<tr>
<td>Length field</td>
</tr>
<tr>
<td>Entry GUID</td>
</tr>
<tr>
<td>Entry SHA256 hash</td>
</tr>
<tr>
<td>Padding</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>00000000</th>
<th>06 d6 38 94 22 4f c9 4c b4 79 a7 93 d4 11 fd 21</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000010</td>
<td>a8 00 d8 2d d0 97 20 bd 94 4c aa 78 e7 71 4d 36</td>
</tr>
<tr>
<td>00000020</td>
<td>ab 2a 32 00 11 ab 76 6e b2 0d 26 60 1f e3 ca c3</td>
</tr>
<tr>
<td>00000030</td>
<td>37 a7 f9 78 4d 23 ad f7 15 ba 7a 2a 17 7d f1 a4</td>
</tr>
<tr>
<td>00000040</td>
<td>55 d5 c6 d0 31 f7 ba 44 2f 3a d7 4b 9a f1 41 e2</td>
</tr>
<tr>
<td>00000050</td>
<td>91 69 78 1d 32 00 e3 b0 c4 42 98 fc 1c 14 9a fb</td>
</tr>
<tr>
<td>00000060</td>
<td>f4 c8 99 6f b9 24 27 ae 41 e4 64 9b 93 4c a4 95</td>
</tr>
<tr>
<td>00000070</td>
<td>99 1b 78 52 b8 55 37 94 e7 4d d2 ab 7f 42 b8 35</td>
</tr>
<tr>
<td>00000080</td>
<td>d5 b1 72 d2 04 5b 32 00 55 76 03 b1 34 8f 05 94</td>
</tr>
<tr>
<td>00000090</td>
<td>2e ce 55 c1 88 49 6b 86 cb 2f 36 4e 2e 2f 50 72</td>
</tr>
<tr>
<td>000000a0</td>
<td>b6 68 13 4c c9 8a 87 b8 00 00 00 00 00 00 00 00</td>
</tr>
</tbody>
</table>
Solution details

- QEMU loads OVMF into guest memory
- QEMU loads hashes of kernel+initrd+cmdline into guest memory
- SEV measures all guest memory
- Guest owner approves → Launch!
- Jumps to OVMF
- OVMF reads the kernel from fw_cfg
- OVMF verifies kernel against the expected hash
 - Same for initrd and kernel command-line
- Loads it into memory
- Jumps to kernel
Attack mitigation

- Host uses wrong kernel / initrd / cmdline
 - Measurement won’t match
- Host replaces OVMF with own version which doesn’t verify the hashes
 - Measurement won’t match
- Host fills expected hashes but passes wrong content via fw_cfg
 - Measurement OK, but OVMF will refuse to load the content because it doesn’t match the expected hash
Caveat

- kernel/initrd/cmdline are readable by the (untrusted) host
 - as is OVMF now

- Only use when the kernel+initrd are not confidential

- Alternatively: use encrypted disk boot
 - KVM Forum 2021 talk: Encrypted Virtual Machine Images for Confidential Computing (James Bottomley, IBM & Brijesh Singh, AMD)
Implementation status

- **OVMF part**
 - Designate memory area for hashes list
 - Verify fw_cfg blobs against the hashes list
 - Status: Merged to master in July 2021

- **QEMU part**
 - Calculate hashes and populate the OVMF designated memory area
 - Status: Reviewed; expected in v6.2
Accessing injected secrets

- Once we have a properly measured guest, Guest Owner can inject secrets (secure channel)
- OVMF and QEMU already support that
- But there’s no easy way to access them in the guest userland
- We proposed an sev_secret kernel module which exposes the injected secrets in a securityfs dir
 - Ongoing discussion (linux-coco mailing list)
sev_secret module usage

```
# modprobe sev_secret
# ls -l /sys/kernel/security/coco/sev_secret
-r--r----- 1 root root 0 Jun 28 11:54 736870e5-84f0-4973-92ec-06879ce3da0b
-r--r----- 1 root root 0 Jun 28 11:54 83c83f7f-1356-4975-8b7e-d3a0b54312c6
-r--r----- 1 root root 0 Jun 28 11:54 9553f55d-3da2-43ee-ab5d-ff17f78864d2
-r--r----- 1 root root 0 Jun 28 11:54 e6f5a162-d67f-4750-a67c-5d065f2a9910

# xxd /sys/kernel/security/coco/sev_secret/e6f5a162-d67f-4750-a67c-5d065f2a9910
00000000: 7468 6573 652d 6172 652d 7468 652d 6b61 these-are-the-ka
00000010: 7461 2d73 6563 7265 7473 0001 0203 0405 ta-secrets......
00000020: 0607

# rm /sys/kernel/security/coco/sev_secret/
   e6f5a162-d67f-4750-a67c-5d065f2a9910
(wipes secret from memory)
```
Future plans

• Improve Guest Owner’s experience
 – Every change in kernel / initrd / cmdline invalidates the expected measurement

• Adapt this scheme to support newer generations
 – AMD SEV-ES (measure CPU state)
 – AMD SNP
 – Intel TDX
Securing Linux VM boot with AMD SEV measurement

Dov Murik & Hubertus Franke
IBM