
Securing Linux VM boot with

AMD SEV measurement
Dov Murik & Hubertus Franke

IBM

Work of many people

• Colleagues from IBM

– Tobin Feldman-Fitzthum, James Bottomley,

Jim Cadden

• edk2/OVMF community

• QEMU community

Confidential Computing setting

• Goal: Protect the guest from the hypervisor

• Cloud Service Provider (untrusted)

• Host machine (untrusted)

• Guest Owner

• Guest VM

• Sensitive guest computing workload

• Encrypted memory

The problem

• Memory encryption is not enough

• Guest Owner has no idea what’s running

in the guest

– Need to verify that the desired workload is

indeed running in the guest

AMD SEV

• AMD-SP (Secure Processor) hardware
– Also called PSP (Platform Secure Processor)

• VM memory is encrypted

• Guest launch measurement
– Hash of initial guest memory before VM starts

– Signed by AMD-SP

• Guest secret injection
– Only at launch, immediately after verifying the

measurement

VM boot process with -kernel

• Example QEMU command line:
– qemu-system-x86_64 -kernel vmlinuz-5.13.0 \

-initrd initrd.img-5.13.0

• QEMU reads these files to a fw_cfg “device”

• QEMU loads OVMF into guest memory

• SEV measures memory

• Guest owner approves → Launch!

• Jumps to OVMF

• OVMF reads kernel / initrd / cmdline from fw_cfg

• Loads it into memory

• Jumps to kernel

VM boot process with -kernel
Guest Owner Guest

 ead erne i e to w c g

Load O to guest e or

 easure guest e or

 easure ent

 easure ent

 pproved aunch!

Launch start O

 ead erne ro w c g

v inu content

 u p to erne

Host attack on boot with -kernel

• Host runs:
– qemu-system-x86_64 -kernel malicious-5.13.0 …

• QEMU loads a malicious guest kernel

• QEMU loads OVMF into guest memory

• SEV measures memory

• Guest owner approves → Launch!

• Jumps to OVMF

• OVMF reads the malicious kernel from fw_cfg

• Loads it into memory

• Jumps to malicious kernel

Vulnerability

• AMD-SP hardware measured OVMF

• … but didn’t measure kernel / initrd /

cmdline

– (as they are not part of the initial VM memory)

Solution

• “ xtend the easure ent”

• Add a list of hashes (of kernel / initrd /

cmdline) to the initial guest memory

• AMD-SP will measure OVMF + list of

hashes

• OVMF will verify hashes when loading

kernel / initrd / cmdline from fw_cfg

Hashes GUIDed table

00000000 06 d6 38 94 22 4f c9 4c b4 79 a7 93 d4 11 fd 21

00000010 a8 00 d8 2d d0 97 20 bd 94 4c aa 78 e7 71 4d 36

00000020 ab 2a 32 00 11 ab 76 6e b2 0d 26 60 1f e3 ca c3

00000030 37 a7 f9 78 4d 23 ad f7 15 ba 7a 2a 17 7d f1 a4

00000040 55 d5 c6 d0 31 f7 ba 44 2f 3a d7 4b 9a f1 41 e2

00000050 91 69 78 1d 32 00 e3 b0 c4 42 98 fc 1c 14 9a fb

00000060 f4 c8 99 6f b9 24 27 ae 41 e4 64 9b 93 4c a4 95

00000070 99 1b 78 52 b8 55 37 94 e7 4d d2 ab 7f 42 b8 35

00000080 d5 b1 72 d2 04 5b 32 00 55 76 03 b1 34 8f 05 94

00000090 2e ce 55 c1 88 49 6b 86 cb 2f 36 4e 2e 2f 50 72

000000a0 b6 68 13 4c c9 8a 87 b8 00 00 00 00 00 00 00 00

Table header GUID

Length field

Entry GUID

Entry SHA256 hash

Padding

Solution details

• QEMU loads OVMF into guest memory

• QEMU loads hashes of kernel+initrd+cmdline into
guest memory

• SEV measures all guest memory

• Guest owner approves → Launch!

• Jumps to OVMF

• OVMF reads the kernel from fw_cfg

• OVMF verifies kernel against the expected hash
– Same for initrd and kernel command-line

• Loads it into memory

• Jumps to kernel

Attack mitigation

• Host uses wrong kernel / initrd / cmdline
– easure ent won’t atch

• Host replaces OVMF with own version
which doesn’t veri the hashes
– easure ent won’t atch

• Host fills expected hashes but passes
wrong content via fw_cfg
– Measurement OK, but OVMF will refuse to

 oad the content because it doesn’t atch the
expected hash

Caveat

• kernel/initrd/cmdline are readable by the
(untrusted) host
– as is OVMF now

• Only use when the kernel+initrd are not
confidential

• Alternatively: use encrypted disk boot
– KVM Forum 2021 talk: Encrypted Virtual Machine

Images for Confidential Computing
(James Bottomley, IBM & Brijesh Singh, AMD)

Implementation status

• OVMF part
– Designate memory area for hashes list

– Verify fw_cfg blobs against the hashes list

– Status: Merged to master in July 2021

• QEMU part
– Calculate hashes and populate the OVMF

designated memory area

– Status: Reviewed; expected in v6.2

Accessing injected secrets

• Once we have a properly measured guest, Guest
Owner can inject secrets (secure channel)

• OVMF and QEMU already support that

• But there’s no eas wa to access the in the
guest userland

• We proposed an sev_secret kernel module which
exposes the injected secrets in a securityfs dir
– Ongoing discussion (linux-coco mailing list)

sev_secret module usage
modprobe sev_secret

ls -l /sys/kernel/security/coco/sev_secret

-r--r----- 1 root root 0 Jun 28 11:54 736870e5-84f0-4973-92ec-06879ce3da0b

-r--r----- 1 root root 0 Jun 28 11:54 83c83f7f-1356-4975-8b7e-d3a0b54312c6

-r--r----- 1 root root 0 Jun 28 11:54 9553f55d-3da2-43ee-ab5d-ff17f78864d2

-r--r----- 1 root root 0 Jun 28 11:54 e6f5a162-d67f-4750-a67c-5d065f2a9910

xxd /sys/kernel/security/coco/sev_secret/e6f5a162-d67f-4750-a67c-5d065f2a9910

00000000: 7468 6573 652d 6172 652d 7468 652d 6b61 these-are-the-ka

00000010: 7461 2d73 6563 7265 7473 0001 0203 0405 ta-secrets......

00000020: 0607 ..

rm /sys/kernel/security/coco/sev_secret/
e6f5a162-d67f-4750-a67c-5d065f2a9910

(wipes secret from memory)

Future plans

• I prove Guest Owner’s experience
– Every change in kernel / initrd / cmdline

invalidates the expected measurement

• Adapt this scheme to support newer
generations
– AMD SEV-ES (measure CPU state)

– AMD SNP

– Intel TDX

Securing Linux VM boot with

AMD SEV measurement
Dov Murik & Hubertus Franke

IBM

