
Asynchronous Page Fault and SDEI
Virtualization for ARM64

Gavin Shan <gshan@redhat.com>
KVM Forum 2021

 2

Overview

● Motivation
● Current Status
● Requirements
● Async PF on ARM64
● SDEI Virtualization
● Performance
● Conclusions
● Review & Community Support

 3

Motivation

● Asynchronous Page Fault (Async PF) improves the guest’s parallelism
significantly, by rescheduling other processes for execution in the guest while the
host resolves stage-2 page fault.

● The guest’s performance benefits from the improved parallelism by Async PF
during post-copy live migration.

● Async PF may serve other purposes, like relaying FUSE’s errors from host to
guest.

 4

Current Status

● Async PF is introduced to X86 initially.
(https://www.linux-kvm.org/images/a/ac/2010-forum-Async-page-faults.pdf)

● Virtiofsd uses Async PF to relay FUSE’s errors from host to guest on X86.

● Async PF is supported on S390, but not available on ARM64 yet.

https://www.linux-kvm.org/images/a/ac/2010-forum-Async-page-faults.pdf

 5

Requirements

● Async PF depends on two notifications: page-not-present and page-ready.

● Page-not-present notification is synchronously sent from host to guest before the
stage-2 page fault is to be resolved. The guest reschedules other processes for
execution while the stage-2 page fault is being resolved on the host.

● Page-ready notification is asynchronously sent from host to guest after the stage-
2 page fault is resolved on the host. The guest reschedules the previous faulting
process for execution.

● The data block, shared between host and guest, is updated to differentiate the
notifications and identify the specific Async PF by a unique token.

● Configuration and live migration are supported by using the control data block.

 6

Async PF on ARM64

● Page Fault vector (14) is used to deliver page-not-present notification on X86. The
same mechanism is unavailable on ARM64 due to the limited space in ESR_EL1.

● SDEI (Software Delegated Exception Interface) is leveraged to deliver the page-
not-present notification synchronously on ARM64.

● Private Peripheral Interrupt (PPI) is used to deliver the page-ready notification in
asynchronous fashion, similar to X86’s implementation where vector 243 is used.

● The shared data block is updated on ARM64 when the notifications are delivered
and acknowledged, exactly same to the implementation on X86.

● The control data block is accessed by SMCCC (Secure Monitor Call Calling
Convention) to configure Async PF on ARM64, but emulated MSRs are reserved
for it on X86.

● The control data block is also accessed by IOCTL commands from userspace to
support live migration on ARM64.

 7

Async PF on ARM64

(1) Configuration
 (IOCTL)

(2) Enable
 (SMCCC)

(4) Page-not-present
 (SDEI event)

(5) Acknowledge
 page-not-present
 (Rescheduling IPI)

(7) Page-ready
 (PPI interrupt)

Guest

Host

QEMU

The control data block is updated
when Async PF is configured,
while the shared data block is
updated when page-not-present
and page-ready are delivered and
acknowledged.

(8) Acknowledge
 page-ready
 (SMCCC)

(3) Stage-2
 page fault
 (Trap)

(6) Resolution of
 stage-2 page fault
 (Worker)

 8

Migration of Async PF

Guest

(2) Migration

(3) Configuration
 (IOCTL)

(1) Configuration
 (IOCTL)

The state of Async PF,
residing in the control data
block, is retrieved on source
VM and restored on target
VM through IOCTL interface.

Host

Guest

Host

QEMU QEMU

 9

SDEI

● Abbreviation of Software Delegated Exception Interface, defined by DEN0054A
(https://developer.arm.com/documentation/den0054/latest). It provides a
mechanism for registering and servicing system events from hypervisor. The
interface is offered by hypervisor to guest OS.

● The service is delivered with SDEI event, identified by unique event number. The
SDEI event is delivered to guest OS immediately regardless of guest’s state. It is
not maskable by irq_disable(), similar to x86’s NMI in this regard.

● SDEI events are classified into shared and private events. The shared event is
owned by multiple PEs (Processing Elements) and delivered to one of them. The
private event is only visible and owned by one PE.

● The private SDEI event and interrupt (PPI) are used by Async PF for page-not-
present and page-ready notification delivery.

https://developer.arm.com/documentation/den0054/latest

 10

SDEI and SMCCC

● SMCCC (Secure Monitor Call Calling Convention), defined by DEN0028D.
(https://developer.arm.com/documentation/den0028/latest)

● Define a common calling mechanism to be used with the Secure Monitor Call
(SMC) and Hypervisor Call (HVC) instructions.

● The HVC instruction is used to generate a synchronous exception, which is
handled by a hypervisor running in EL2. The arguments and return values are
passed in X0-X17 registers. The service is identified by the argument in X0.

● SDEI falls in the category of SMCCC’s Standard Service Calls whose function ID is
0x4.

https://developer.arm.com/documentation/den0028/latest

 11

SDEI Interface

Host Guest

PRIVATE_RESET

SHARED_RESET

VERSION

Host GuestPE_UNMASK

PE_MASK

REGISTER

ENABLE

GET_INFO

UNREGISTER

DISABLE

All these calls in control path are delivered through SMCCC.

 12

SDEI Interface

Host Guest

(2) COMPLETE

(1) SDEI event

(3) COMPLETE_AND_RESUME

(1) The following registers are saved and then
 the registered handler is invoked in guest.

 x0 – x17, PC, PState

(2) COMPLETE and COMPLETE_AND_RESUME
 issued through SMCCC, notify the received
 SDEI event has been handled.

(3) COMPLETE_AND_RESUME schedules the
 pending interrupts immediately, while
 COMPLETE does not.

 13

Performance of Heavy Swapin

The test program writes to all available memory while calculation
thread might be running in parallel.

vCPU: 1 Memory: 1024MB cgroupv2.limit: 512MB
Command: testsuite test async_pf -l 1 [-t] -q
Asynchronous page faults: 55000

Time- Calculation- Time+ Calculation+ Output
--
13.214s 14.072s +6.4%
13.329s 14.150s +6.1%
13.433s 14.159s +5.4%
13.535s 14.222s +5.0%
13.553s 14.328s +5.7%
24.016s 1806m 15.294s 1042m -36.3%
24.264s 1826m 15.542s 1040m -35.9%
24.579s 1835m 15.616s 1033m -36.4%
27.230s 2257m 15.738s 1084m -42.2%
27.236s 2278m 15.862s 1071m -41.7%

~5% more time to finish the job due
to the overhead introduced by Async
PF.

~40% less time to finish the job,
significant improvement in terms of
parallelism or interactivity.

 14

Performance of Live Migration

Performance in post-copy live migration scenario.

vCPU: 1 Memory: 1024MB cgroupv2.limit: unlimited
Command: testsuite test async_pf -l 50 [-t] -q
Migrate.total_time: ~1.6s

Time- Calculation- Time+ Calculation+ Output
--
 8.910s 8.610s -3.3%
 8.965s 8.620s -3.8%
 9.125s 8.659s -5.1%
 9.217s 8.685s -5.7%
 9.281s 8.685s -6.4%
19.483s 1581m 19.346s 1657m -0.7% +67.1%
19.838s 1611m 19.976s 1711m +0.7% +68.3%
19.976s 1630m 20.183s 1733m +1.0% +65.9%
20.441s 1707m 20.193s 1742m -1.2% +41.7%
20.900s 1763m 20.439s 1781m -2.2% +42.1%

~3% to ~6% less time needed to finish
the job because the improved interactivity
by Async PF helps to decrease the page
dirty rate and post-copy requests.

The time used to finish the job is
comparative, but ~41% to ~68% more
calculation capability (speed) is offered
during the live migration by the improved
interactivity from Async PF.

 15

Performance of Live Migration

The post-copy request count is dropped from 1065 to 782 because of the improved interactivity
by Async PF. The calculation capacity (speed) is improved by ~70% during the period of live
migration.

 Time- Time+ Time- Time+
--
Memory write: 9.151s 8.856s 20.400s 20.439s
Calculation: 1684m 1781m

total time: 1687ms 1762ms 1672ms 1664ms
downtime: 10ms 11ms 10ms 10 ms
setup: 3ms 3ms 3ms 4 ms
transferred ram: 914646KB 916202KB 914682KB 916214KB
throughput: 4449.92mbps 4267.47mbps 4490.09mbps 4522.03mbps
dirty sync count: 2 2 2 2
page size: 4KB 4KB 4 KB 4KB
pages-per-second: 153009 153495 152873 159403
post-copy request count: 1065 782 243 321

 16

Conclusions

● Async PF is significantly beneficial to the guest’s parallelism or interactivity.
~40% improvement of the parallelism in the heavy swapin scenario.

● It is also tremendously beneficial (41% to 68%) to the guest’s performance in the
period of post-copy live migration.

 17

Review & Community Support

● Updated patchset is available online

https://lkml.org/lkml/2021/8/14/415 # Support SDEI Virtualization (v4)
https://lkml.org/lkml/2021/8/14/443 # Support Asynchronous Page Fault (v4)

https://github.com/gwshan/linux # kvm/arm64_sdei
https://github.com/gwshan/linux # kvm/arm64_apf
https://github.com/gwshan/qemu # kvm/arm64_sdei
https://github.com/gwshan/qemu # kvm/arm64_apf

https://lkml.org/lkml/2021/8/14/415
https://lkml.org/lkml/2021/8/14/443
https://github.com/gwshan/linux
https://github.com/gwshan/linux
https://github.com/gwshan/qemu
https://github.com/gwshan/qemu

THANK YOU

plus.google.com/+RedHat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHatlinkedin.com/company/red-hat

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

