Mitigating Excessive
Pause-Loop-Exiting
In VM-Agnostic KVM

Kenta Ishiguro / Keio University

THE
LINUX
L d SN

About Me

e 3" year PhD student at Keio University, Japan

* Research interests:
* performance and security of hypervisors
* particularly KVM

Oversubscribing virtual CPUs

* Enables better hardware utilization
* Requires multiplexing of virtual CPUs (vCPUs) on physical CPUs (pCPUs)

=) vM | vCPU VM 2 vCPU
[|): vCPU =] vCPU [m]: vCPU [&: vcpu
vCPU vCPU vCPU vCPU
Hypervisor
pCPU pCPU pCPU pCPU

Critical section on pCPU

* Operating System assumption:
* pCPUs are always active

Acquire Spinlock Release Spinlock
pCPUO > a G
Spinning (Pause Loop)

Fail to acquire spinlock Acquire Spinlock

Excessive vCPU spinning

* Oversubscription incurs excessive spinning
* vCPU pre-emption by Hypervisor violates OS assumption

* Lock-holder pre-emption problem

Acquire Spinlock

E vCPUO > G % Preempted by Hypervisor
""" Critical Section
E Spinning (Pause Loop)

Fail to acquire spinlock

Improving guest performance by solving
excessive vVCPU spinning

* Problem
* vCPU wastes its execution time by excessive spinning

* |deal case
* Hypervisor knows which vCPU should be scheduled right now

* But, hard to solve excessive vCPU spinning due to semantic gap

* between KVM and Linux scheduler
* between KVM and guest VMs

Improving guest performance by solving
excessive vVCPU spinning

* Problem
* vCPU wastes its execution time by excessive spinning

4 N

* Ideal ca Boosting a target vCPU can be impeded by the
* HyPS Linux scheduler to keep fairness between vCPUs

- /

* But, hard to SOIWCPU spinning due to semantic gap

* between KVM and Linux scheduler
* between KVM and guest VMs

Improving guest performance by solving
excessive vVCPU spinning

* Problem
* vCPU wastes its execution time by excessive spinning

e)
* Ideal c@ Hard to build comprehensive vCPU candidate set
* HYP¢ for boosting
_ /

* But, hard to sol € vCPU spinning due to semantic gap
* between KVM iInux scheduler

* between KVM and guest VMs

KVM approach with hardware feature

* KVM leverages Pause Loop Exiting (PLE) on Intel x86
* detects excessive vCPU spinning
* gives hypervisors a chance to re-schedule vCPUs

Acquire Spinlock
gy Preempted by
E vCPUO . a % Hypervisor
PLE

Y Splnnlng (Pause Loop)
[=): vcpul =

PLE detects excessive spinning and
transfers the control to the hypervisor for re-scheduling 9

Execution is resumed

KVM’s strategy to suppress PLE events

* Reschedule PLE-ed vCPU to another preempted vCPU
* in Kvm_vcpu_on_spin

* Co-operative rescheduling with Linux scheduler

* leverages yield to provided by CFS scheduler
* makes a request to Linux scheduler to yield and boost vCPUs

* Selects a VCPU to boost in round-robin from candidates
e resource-waiter, lock-waiter, and IPl-receiver vCPUs are candidates

What happens in the worst case?

2/KVM

2/KVM
2/KVM
2/KVM
2/KVM
2/KVM
2/KVM
2/KVM
2/KVM
2/KVM
2/KVM
2/KVM
2/KVM
2/KVM
2/KVM
2/KVM
2/KVM
2/KVM
2/KVM
2/KVM
2/KVM

[00e6]
[e66]
[666]
[666]
[oe6]
[00e6]
[00e6]
[e66]
[666]
[666]
[oe6]
[00e6]
[00e6]
[e66]
[666]
[666]
[oe6]
[00e6]
[00e6]
[e66]
[0086]

276.731784:
76.731819:
76.731823:
76.731845:
76.731849:
76.731871:

76.731901
76.731923:
76.731927:
76.731949:
76.731954:
76.731975:
.7319860:

.732053:

.732058:

kvm: kvm_exit:
kvm: kvm_entry:
kvm:kvm_exit:
kvm:kvm_entry:
kvm:kvm_exit:
kvm: kvm_entry:
kvm: kvm_exit:
kvm: kvm_entry:
kvm:kvm_exit:
kvm:kvm_entry:
kvm:kvm_exit:
kvm: kvm_entry:
kvm: kvm_exit:
kvm: kvm_entry:
kvm:kvm_exit:
kvm:kvm_entry:
kvm:kvm_exit:
kvm: kvm_entry:
kvm: kvm_exit:
kvm: kvm_entry:
kvm:kvm_exit:

KVM trace with running two 8-vCPU VMs simultaneously

reasonPAUSE_INSTRUCTION

reason|PAUSE_INSTRUCTION fri

reason |PAUSE_INSTRUCTION|ri
reason |PAUSE_INSTRUCTION|ri
reason |PAUSE_INSTRUCTION|ri
reason |PAUSE_INSTRUCTION|ri
reason |PAUSE_INSTRUCTION|ri
reason |PAUSE_INSTRUCTION|ri
reason |PAUSE_INSTRUCTION|ri

reason|PAUSE_INSTRUCTIONri

[T o T 6 T G T Y T N6 T S T ¥ T 6 T o O T S T T Y T N D Y T ST Y T N T Y T

reason|PAUSE INSTRUCTIONEri

info €

info €

info €

info €

info €

info €

info €

info €

info €

info €

info €

PLE events occur continuously (> 100 times)

What happens in the worst case?

KVM trace with running two 8-vCPU VMs simultaneously
2/KVM [006] .731784 kvm: kvm_exit: info €
2/KVM [066] .731819 kvm: kvm_entry:
2/KVM [066] .731823 kvm:kvm_exit:
2/KVM [e66] |276.731845 kvm:kvm_entry:
2/KVM [006] .731849 kvm:kvm_exit:
2/KVM [006] .731871 kvm: kvm_entry:
2/KVM [e66] |276.731875 kvm:kvm_exit:
2/KVM [e66] |276.731897 kvm:kvm_entry:
2/KVM [e66] [J276.731961 kvm:kvm_exit:
2/KVM [e66] |J276.731923 kvm:kvm_entry:
2/KVM [ee6] |276.731927 kvm:kvm_exit:
2/KVM [066] |J276.731949 kvm:kvm_entry:
2/KVM [e66] |J276.731954 kvm:kvm_exit:
2/KVM [666] |276.731975 kvm:kvm_entry:
2/KVM [e66] |J276.731986 kvm:kvm_exit:
2/KVM [e66] |J276.732001 kvm:kvm_entry:
2/KVM [e06] [276.732006 kvm:kvm_exit:
2/KVM [e66] |276.732027 kvm: kvm_entry:
2/KVM [e66] |276.732032 kvm:kvm_exit:
2/KVM [666] |276.732053 kvm: kvm_entry:
2/KVM [e66] |276.732058 kvm:kvm_exit:

reason PAUSE_INSTRUCTION rip info €
reason PAUSE_INSTRUCTION rip info €
reason PAUSE_INSTRUCTION rip info €
reason PAUSE_INSTRUCTION rip info €
reason PAUSE_INSTRUCTION rip info €
reason PAUSE_INSTRUCTION rip info €
reason PAUSE_INSTRUCTION rip info €

reason PAUSE_INSTRUCTION rip info @

reason PAUSE_INSTRUCTION rip info @

[T o T 6 T G T Y T N6 T S T ¥ T 6 T o O T S T T Y T N D Y T ST Y T N T Y T

reason PAUSE_INSTRUCTION ri info 6

Continuous PLE occur in the short period

What happens in the worst case?

KVM trace with running two 8-vCPU VMs simultaneously

2/KVM [e66] 276.731784: kvm:kvm_exit: vcpu 2 reason PAUSE_INSTRUCTION
2/KVM [e66] 276.731819: kvm:kvm_entry: vcpu 2

2/KVM [066] 276.731823: kvm:kvm_exit: vcpu 2 reason PAUSE_INSTRUCTION fri
2/KVM [e66] 276.731845: kvm:kvm_entry: vcpu 2

2/KVM [ee6] 276.731849: kvm:kvm_exit: vcpu 2 reason PAUSE_INSTRUCTION fri
2/KVM [ee6] 276.731871: kvm:kvm_entry: vcpu 2

2/KVM [e66] 276.731875: kvm:kvm_exit: vcpu 2 reason PAUSE_INSTRUCTION fri
2/KVM [e66] 276.731897: kvm:kvm_entry: vcpu 2

2/KVM [e66] 276.731901: kvm:kvm_exit: vcpu 2 reason PAUSE_INSTRUCTIZq
2/KVM [e66] 276.731923: kvm:kvm_entry: vcpu 2

2/KVM [ee6] 276.731927: kvm:kvm_exit: vcpu 2 reason PAUSE g

2/KVM [e66] 276.731949: kvm: kvm_eptryv-_venn 2

2/KVM [e66] 276.731954: kvm: kvm_

2/KVM [@06] 276.731975: HOuE] At the same code location
2/KVM [066] .7319860: kvm: kvm_|

2/KVM [066] . : kvm:kvm_entry:

2/KVM [006] 3.) kvm:kvm_exit: 2 reason PAUSE_INSTRUCTION jri
2/KVM [e66] 276.732027: kvm: kvm_entry: 2

2/KVM [ee6] 276.732032: kvm:kvm_exit: 2 reason PAUSE_INSTRUCTION fri
2/KVM [066] .732053: kvm: kvm_entry: 2

2/KVM [066] .732058: kvm:kvm_exit: vcpu 2 reason PAUSE_INSTRUCTION fri

What happens in the worst case?

2/KVM
2/KVM
2/KVM
2/KVM
2/KVM
2/KVM
2/KVM
2/KVM
2/KVM
2/KVM
2/KVM
2/KVM
2/KVM
2/KVM
2/KVM
2/KVM
2/KVM
2/KVM
2/KVM
2/KVM
2/KVM

[eo6]
[606]
[e66]
[e66]
[eo6]
[eo6]
[eo6]
FaEaT

KVM trace with running two 8-vCPU VMs simultaneously

.731784:
.731819:
.731823:
.731845:
.731849:
.731871:
.731875:
721RG7 -

kvm: kvm_exit:
kvm: kvm_entry:
kvm:kvm_exit:
kvm:kvm_entry:
kvm:kvm_exit:
kvm: kvm_entry:
kvm: kvm_exit:

levme leum antruw-

vcpu 2

vcpu 2

vepu 2

vepu 2

vcpu 2

vcpu 2
vcpu 2

LY TN

gl

PLE events occur continuously (> 100 times)

2679 [006]

in the short period
at the same code location

276.732058:

kvm:kvm_exit: vcpu 2 reason PAUSE_TINSTRUCTION ri

info €

info €

info €

Cumulative Fraction of
PLE occurrences

Continuous PLE events are NOT rare

* Most humber of PLE events are from continuous PLE events

* Cause of PLE events: both spinlock and TLB shootdown

Dedup Ebizzy Psearchy Vips
1.0 T T v
(1.5 1 : ! :
0.6 - i 1 (— e —
[.] 1 T 1 1 1
0.2 i ! |
0.0 15 11 3 310 11 5 30 11 o 3 0 1l 12 3
10 10 10- 10710 10 10- 10710 10 10- L0110 10 10- 10

Number of continuous PLE

Continuous PLE events are NOT rare

* Most humber of PLE events are from continuous PLE events

* Cause of PLE events: both spinlock and TLB shootdown

o =
0 o

o
o

©
N

Proportion of PLE reason

©
o

o
I

Il Spinlock

dbench

dedup

ebizzy

[TLB Shootdown

ferret

gmake
hackbench

pbzip2

psearchy

[Intentional Delay

raytrace

streamcluster

swaptions

Vips

Average

Functionality

Function causing PLE events

spinlock

native_queued_spin_lock_slowpath
queued_write_lock slowpath
queued_read lock slowpath
try_to_wake up

etc...

TLB shootdown

smp_call_function_many
smp_call_function_single

Why PLE events occur continuously?

* Lost opportunity and Overboost
* Comprehensive approach to identify the root cause of PLE does not exist
* Mitigation:

* Scheduler mismatch
* Linux scheduler ignores hints from hypervisor
* Mitigation:

How to select candidate vCPU

PLE-ed vCPU sleeps (NOT boost any vCPUs) [2009]
Directed yield [201 1]

—

Less prioritize recently PLE-ed vCPUs [2012]
Boost only preempted vCPUs [201 3] - Optimizations against spinlock
Boost only vCPUs in kernel mode [2017]

Boost halted vCPUs where they have received an IPI [2019]
* Optimization against TLB shootdown

How to select candidate vCPU

PLE-ed vCPU sleeps (NOT boost any vCPUs) [2009]
Directed yield [201 1]

—

Less prioritize recently PLE-ed vCPUs [2012]

Boost only preempted vCPUs [201 3] - Optimizations against spinlock
Boost only vCPUs in kernel mode [2017]

* B——"—“—yCPUs where they have received an IPI [2019]

/_ |nsights hn againet T1 R chnantdnwn

* Spinlock still incurs continuous PLE events
* vCPUs in user mode also need to ack when TLB shootdown happens
* No need to boost IPl-receivers when lock-holder preemption happens

-

How to select candidate vCPU

PLE-ed vCPU sleeps (NOT boost any vCPUs) [2009]
Directed yield [201 1]

—

Less prioritize recently PLE-ed vCPUs [2012]
Boost only preempted vCPUs [201 3] - Optimizations against spinlock
Boost only vCPUs in kernel mode [2017]

"B |nLSi f;ts VCPL‘.' due to scheduler mismatch (described Iater)w
e 8) N
* Spinlock still incurs continuous PLE events

* vCPUs in user mode also need to ack when TLB shootdown happens
* No need to boost IPl-receivers when lock-holder preemption happens

How to select candidate vCPU

PLE-ed vCPU sleeps (NOT boost any vCPUs) [2009]
Directed yield [201 1]

—

Less prioritize recently PLE-ed vCPUs [2012]

Boost only preempted vCPUs [201 3] - Optimizations against spinlock
Boost only vCPUs in kernel mode [2017]

¢ Be—stlmiy CP
Insights

e 8

* Spinlock still i

* VvCPUs in user mode also need to ack when TLB shootdown happens
* No need to boost IPl-receivers when lock-holder preemption happens

- L%

Lost opportunity

I =l YT ITIWUOD

How to select candidate vCPU

B

Less prioritize recently PLE-ed vCPUs [2012]

Boost only preempted vCPUs [201 3] - Optimizations against spinlock
Boost only vCPUs in kernel mode [2017]

PLE-ed vCPU sleeps (NOT boost any vCPUs) [2009]
Directed yield [201 1]

—

~—=L—~—vCPUs where they have received an IPl [20]9]

Insights hn againct T1 R chantdawn

Spinlock still i Overboost
vCPUs in use hootdown happens
No need to boost IPl-receivers when lock-holder preemption happens

%

Mitigation: Strict Boost

PLE-ed vCPU sleeps (NOT boost any vCPUs) [2009]
Directed yield [2011]
Less prioritize recently PLE-ed vCPUs [2012] |

Boost only preempted vCPUs [201 3] - Optimizations against spinlock
Boost only vCPUs in kernel mode [2017]

BL Introduce new strategies for candidate vCPU selection }”9]
yA

Boost IPl-receiver vCPUs in user mode
Not boost halted vCPUs if the yielded vCPU has NOT sent an IPI to it

23

Why PLE events occur continuously?

+ Lost-oppertunity-and-Overboost

e Scheduler mismatch

Problem: Scheduler Mismatch

* Linux CFS does not distinguish between vCPUs and other threads
* KVM makes request to Linux CFS for boosting vCPU
* But Linux CFS always keeps fairness between vCPUs

(cfs_rg->next && wakeup_preempt_entity(cfs_rg->next, left) < 1) {

se = cfs_rg->next;

in kernel/sched/fair.c

25

Case Study: Scheduler Mismatch

Linux CFS runqueue

Next task

Runtime-based Priority

|. Picks the highest priority task: vCPU 0

26

Case Study: Scheduler Mismatch

Linux CFS runqueue Yield
[E): vCPU oqj‘

Next task Threshold ——— =
[=]: vcPU O hE— L] R ON
Boost

Runtime-based Priority

2. cputimey,cpy1 — cputime,cpyo > threshold

27

Case Study: Scheduler Mismatch

CFS considers scheduling vCPU | is too unfair

Linux CFS runqueue Boost request is ignhored
Next task / : [=]: veru O\H
ey Threshold =
[=]: vcPU O ha— L] e Ul S

Boost
High t— | ow =) vepu

Runtime-based Priority

3. Decides not to yield vCPU 0 and not to boost vCPU |

Case Study: Scheduler Mismatch

Linux CFS runqueue V4

vCPU 0 consumes its cputime for executing pause-loop

7 [=]: vCPU Oﬂ

Runtime-based Priority

4. vCPU 0 triggers PLE again because vCPU | still has the lock

29

Case Study: Scheduler Mismatch

Linux CFS runqueue Yield
[E): vCPU oqj‘

et s Threshold | exttask | | ==

[E): vcPUo (& [E]: vCPU I

Runtime-based Priority

2. vCPU | is boosted eventually because
cputime,cpyy — cputime,cpyo < threshold

IIIIIIIII Boost

30

Mitigation: Debooster

e Debooster makes CFS not to hesitate to boost another vCPU instead
of vCPU which exits due to PLE

* by lowering PLE-ed vCPU priority

Linux CFS run{ VCPU | is boosted without wasting vCPU 0’s cputime

[®): vcPU 0 «—Threshold _Ligi: vcpuy |

Runtime-based Priority

31

Implementation

 Modified Linux KVM 5.6.0

* Our mitigations require 4| LoC modification
* Debooster:yield to_task() interface in CFS

e Strict Boost: vCPU candidate selection and IPl handler in KVM

Experimental Setup

e Testbed

* 8-core (Intel Xeon)
* 2VMs with 8 vCPU for each

* Benchmarks

* dedup and vips from parsec
e psearchy from mosbench
* ebizzy

e swaptions: CPU-intensive workload co-runner in another VM

Evaluation: Reduction of PLE Occurrences

Normalized number of PLE events

1.0

(1.5 4

(.6 1

(1.4 A

(1.2 1

(.0

Dedup

Vips

Ebizzy

I Bascline KVM

Debooster and
Strict Boost

Psearchy

35

Evaluation: Performance

Execution time is reduced by 40 %

Normalized execution time

Improvement

Throughput is improved by 75 %

2.00
1.0 -
1.75
0.5 - S 150
o
-
X 95
s
0.6 1 o
S
K Wili
()]
N
0.4 1 = 0.75
e
o
0.50
0.2 - Z
0.25
0.0 B Bascline KVM 0.00-

Dedup Vips Debooster and

Strict Boost

Ebizzy Psearchy

36

Evaluation: System Fairness

* Co-runner’s performance degradation cannot be seen

* Mitigations do not raise the priority of the boosted vCPU

0
c
2
S TR T TN TR N N
© P —~r .
= < V.70 I Baseline KVM
b é 20 Debooster and
% % 0.2071 Strict Boost
£ ° oo
o | gs - o TR e = o n

= ‘g - = o — 'E: o f—
Z w] =)] = | = S -

= ™ U e = B O o

= [T] [}

S =z

hackbench
raytrace
streamcluster

37

Conclusion

* Oversubscribing vCPUs incurs excessive spinning
* Pause-Loop-Exiting (PLE) unfortunately does not fix it

* due to the semantic gap between
* KVM and guestVMs
* KVM and Linux scheduler

* Introduced mitigations against identified problems improve apps throughput by up to 75 %
* Strict Boost against lost opportunity and overboost
* Debooster against scheduler mismatch

* Problem investigated by the KVM community
* https://lore.kernel.org/kvm/20210421150831.60133-|-kentaishiguro@sslab.ics.keio.ac.jp/
* https://lore.kernel.org/lkvm/1618542490-14756- | -git-send-email-wanpengli@tencent.com/

 Ishiguro, K., Yasuno, N., Aublin, P. L., & Kono, K. (2021, April). Mitigating excessive vCPU spinning in VM-
agnostic KVM (VEE "21)

38

Thanks & QA

Mitigating Excessive Pause-Loop-Exiting in VM-Agnostic KVM

Contact: kentaishiguro@sslab.ics.keio.ac.jp

