
Mitigating Excessive
Pause-Loop-Exiting
in VM-Agnostic KVM
Kenta Ishiguro / Keio University



About Me

• 3rd year PhD student at Keio University, Japan

• Research interests:
• performance and security of hypervisors

• particularly KVM

2



Oversubscribing virtual CPUs

• Enables better hardware utilization

• Requires multiplexing of virtual CPUs (vCPUs) on physical CPUs (pCPUs)

pCPU

vCPU

VM 1 vCPU

3

vCPU

pCPU

vCPU

vCPU

pCPU

vCPU

vCPU

pCPU

vCPU

vCPU

VM 2 vCPU

Hypervisor



Critical section on pCPU

• Operating System assumption:
• pCPUs are always active

pCPU0

pCPU1

Acquire Spinlock Release Spinlock

Critical Section

Fail to acquire spinlock

Spinning (Pause Loop)

Acquire Spinlock

Critical Section

4



Excessive vCPU spinning

• Oversubscription incurs excessive spinning

• vCPU pre-emption by Hypervisor violates OS assumption

• Lock-holder pre-emption problem

vCPU0

vCPU1

Acquire Spinlock

Preempted by Hypervisor
Critical Section

Fail to acquire spinlock

Spinning (Pause Loop)

5



Improving guest performance by solving 
excessive vCPU spinning

• Problem
• vCPU wastes its execution time by excessive spinning

• Ideal case
• Hypervisor knows which vCPU should be scheduled right now

• But, hard to solve excessive vCPU spinning due to semantic gap
• between KVM and Linux scheduler

• between KVM and guest VMs

6



Improving guest performance by solving 
excessive vCPU spinning

• Problem
• vCPU wastes its execution time by excessive spinning

• Ideal case
• Hypervisor knows which vCPU should be scheduled right now

• But, hard to solve excessive vCPU spinning due to semantic gap
• between KVM and Linux scheduler

• between KVM and guest VMs

7

Boosting a target vCPU can be impeded by the 

Linux scheduler to keep fairness between vCPUs



Improving guest performance by solving 
excessive vCPU spinning

• Problem
• vCPU wastes its execution time by excessive spinning

• Ideal case
• Hypervisor knows which vCPU should be scheduled right now

• But, hard to solve excessive vCPU spinning due to semantic gap
• between KVM and Linux scheduler

• between KVM and guest VMs

8

Hard to build comprehensive vCPU candidate set 

for boosting



KVM approach with hardware feature

• KVM leverages Pause Loop Exiting (PLE) on Intel x86
• detects excessive vCPU spinning

• gives hypervisors a chance to re-schedule vCPUs

vCPU0

vCPU1

Acquire Spinlock

Preempted by

Hypervisor
Critical Section

Fail to acquire spinlock

Spinning (Pause Loop)

PLE detects excessive spinning and

transfers the control to the hypervisor for re-scheduling 9

Execution is resumed

PLE



KVM’s strategy to suppress PLE events

• Reschedule PLE-ed vCPU to another preempted vCPU
• in kvm_vcpu_on_spin

• Co-operative rescheduling with Linux scheduler
• leverages yield_to provided by CFS scheduler

• makes a request to Linux scheduler to yield and boost vCPUs

• Selects a vCPU to boost in round-robin from candidates
• resource-waiter, lock-waiter, and IPI-receiver vCPUs are candidates

10



What happens in the worst case?

11

KVM trace with running two 8-vCPU VMs simultaneously

PLE events occur continuously (> 100 times)



What happens in the worst case?

12
Continuous PLE occur in the short period

KVM trace with running two 8-vCPU VMs simultaneously



What happens in the worst case?

13

At the same code location

KVM trace with running two 8-vCPU VMs simultaneously



What happens in the worst case?

14

• PLE events occur continuously ( > 100 times)

• in the short period

• at the same code location

KVM trace with running two 8-vCPU VMs simultaneously



Continuous PLE events are NOT rare

• Most number of PLE events are from continuous PLE events

• Cause of PLE events: both spinlock and TLB shootdown

Dedup Ebizzy Psearchy Vips

Number of continuous PLE

C
u
m

u
la

ti
ve

 F
ra

ct
io

n
 o

f

P
L
E
 o

cc
u
rr

e
n
ce

s

15



Continuous PLE events are NOT rare

• Most number of PLE events are from continuous PLE events

• Cause of PLE events: both spinlock and TLB shootdown

16

native_queued_spin_lock_slowpath

queued_write_lock_slowpath

queued_read_lock_slowpath

try_to_wake_up

etc…

smp_call_function_many

smp_call_function_single

Function causing PLE eventsFunctionality

spinlock

TLB shootdown



Why PLE events occur continuously?

• Lost opportunity and Overboost
• Comprehensive approach to identify the root cause of PLE does not exist

• Mitigation: Strict Boost

• Scheduler mismatch
• Linux scheduler ignores hints from hypervisor

• Mitigation: Debooster

17



How to select candidate vCPU

• PLE-ed vCPU sleeps (NOT boost any vCPUs) [2009]

• Directed yield [2011]

• Less prioritize recently PLE-ed vCPUs [2012]

• Boost only preempted vCPUs [2013]

• Boost only vCPUs in kernel mode [2017]

• Boost halted vCPUs where they have received an IPI [2019]
• Optimization against TLB shootdown

• Boost IPI-receiver vCPUs in user mode

• Not boost halted vCPUs if the yielded vCPU has NOT sent an IPI to it

Optimizations against spinlock

18



How to select candidate vCPU

• PLE-ed vCPU sleeps (NOT boost any vCPUs) [2009]

• Directed yield [2011]

• Less prioritize recently PLE-ed vCPUs [2012]

• Boost only preempted vCPUs [2013]

• Boost only vCPUs in kernel mode [2017]

• Boost halted vCPUs where they have received an IPI [2019]
• Optimization against TLB shootdown

• Boost IPI-receiver vCPUs in user mode

• Not boost halted vCPUs if the yielded vCPU has NOT sent an IPI to it

Optimizations against spinlock

• Spinlock still incurs continuous PLE events 

• vCPUs in user mode also need to ack when TLB shootdown happens

• No need to boost IPI-receivers when lock-holder preemption happens

Insights

19



How to select candidate vCPU

• PLE-ed vCPU sleeps (NOT boost any vCPUs) [2009]

• Directed yield [2011]

• Less prioritize recently PLE-ed vCPUs [2012]

• Boost only preempted vCPUs [2013]

• Boost only vCPUs in kernel mode [2017]

• Boost halted vCPUs where they have received an IPI [2019]
• Optimization against TLB shootdown

• Boost IPI-receiver vCPUs in user mode

• Not boost halted vCPUs if the yielded vCPU has NOT sent an IPI to it

Optimizations against spinlock

• Spinlock still incurs continuous PLE events 

• vCPUs in user mode also need to ack when TLB shootdown happens

• No need to boost IPI-receivers when lock-holder preemption happens

Insights
due to scheduler mismatch (described later)

20



How to select candidate vCPU

• PLE-ed vCPU sleeps (NOT boost any vCPUs) [2009]

• Directed yield [2011]

• Less prioritize recently PLE-ed vCPUs [2012]

• Boost only preempted vCPUs [2013]

• Boost only vCPUs in kernel mode [2017]

• Boost halted vCPUs where they have received an IPI [2019]
• Optimization against TLB shootdown

• Boost IPI-receiver vCPUs in user mode

• Not boost halted vCPUs if the yielded vCPU has NOT sent an IPI to it

Optimizations against spinlock

• Spinlock still incurs continuous PLE events 

• vCPUs in user mode also need to ack when TLB shootdown happens

• No need to boost IPI-receivers when lock-holder preemption happens

Insights
Lost opportunity

21



How to select candidate vCPU

• PLE-ed vCPU sleeps (NOT boost any vCPUs) [2009]

• Directed yield [2011]

• Less prioritize recently PLE-ed vCPUs [2012]

• Boost only preempted vCPUs [2013]

• Boost only vCPUs in kernel mode [2017]

• Boost halted vCPUs where they have received an IPI [2019]
• Optimization against TLB shootdown

• Boost IPI-receiver vCPUs in user mode

• Not boost halted vCPUs if the yielded vCPU has NOT sent an IPI to it

Optimizations against spinlock

• Spinlock still incurs continuous PLE events 

• vCPUs in user mode also need to ack when TLB shootdown happens

• No need to boost IPI-receivers when lock-holder preemption happens

Insights

Overboost

22



Mitigation: Strict Boost

• PLE-ed vCPU sleeps (NOT boost any vCPUs) [2009]

• Directed yield [2011]

• Less prioritize recently PLE-ed vCPUs [2012]

• Boost only preempted vCPUs [2013]

• Boost only vCPUs in kernel mode [2017]

• Boost halted vCPUs where they have received an IPI [2019]
• Optimization against TLB shootdown

• Boost IPI-receiver vCPUs in user mode

• Not boost halted vCPUs if the yielded vCPU has NOT sent an IPI to it

Optimizations against spinlock

23

Introduce new strategies for candidate vCPU selection



Why PLE events occur continuously?

• Lost opportunity and Overboost Strict Boost

• Scheduler mismatch

24



Problem: Scheduler Mismatch

• Linux CFS does not distinguish between vCPUs and other threads
• KVM makes request to Linux CFS for boosting vCPU

• But Linux CFS always keeps fairness between vCPUs

25

in kernel/sched/fair.c



Case Study: Scheduler Mismatch

Linux CFS runqueue

vCPU 0 vCPU 1

Runtime-based Priority
High Low

Yield

Boost

26

1. Picks the highest priority task: vCPU 0

2. 𝑐𝑝𝑢𝑡𝑖𝑚𝑒𝑣𝐶𝑃𝑈1 − 𝑐𝑝𝑢𝑡𝑖𝑚𝑒𝑣𝐶𝑃𝑈0 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
3. Decides not to yield vCPU 0 and not to boost vCPU 1

4. vCPU 0 triggers PLE again because vCPU 1 still has the lock

vCPU 1

vCPU 0
Next task



Case Study: Scheduler Mismatch

Linux CFS runqueue

vCPU 0 vCPU 1

Runtime-based Priority
High Low

Yield

Boost

27

1. Picks the highest priority task: vCPU 0

2. 𝑐𝑝𝑢𝑡𝑖𝑚𝑒𝑣𝐶𝑃𝑈1 − 𝑐𝑝𝑢𝑡𝑖𝑚𝑒𝑣𝐶𝑃𝑈0 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
3. Decides not to yield vCPU 0 and not to boost vCPU 1

4. vCPU 0 triggers PLE again because vCPU 1 still has the lock

vCPU 1

vCPU 0

Threshold
Next task



Case Study: Scheduler Mismatch

Linux CFS runqueue

vCPU 0 vCPU 1

Runtime-based Priority
High Low

Yield

Boost

28

1. Picks the highest priority task: vCPU 0

2. 𝑐𝑝𝑢𝑡𝑖𝑚𝑒𝑣𝐶𝑃𝑈1 − 𝑐𝑝𝑢𝑡𝑖𝑚𝑒𝑣𝐶𝑃𝑈0 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
3. Decides not to yield vCPU 0 and not to boost vCPU 1

4. vCPU 0 triggers PLE again because vCPU 1 still has the lock

vCPU 1

vCPU 0

Threshold
Next task

CFS considers scheduling vCPU 1 is too unfair

Boost request is ignored



Case Study: Scheduler Mismatch

Linux CFS runqueue

vCPU 0 vCPU 1

Runtime-based Priority
High Low

Yield

Boost

29

1. Picks the highest priority task: vCPU 0

2. 𝑐𝑝𝑢𝑡𝑖𝑚𝑒𝑣𝐶𝑃𝑈1 − 𝑐𝑝𝑢𝑡𝑖𝑚𝑒𝑣𝐶𝑃𝑈0 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
3. Decides not to yield vCPU 0 and not to boost vCPU 1

4. vCPU 0 triggers PLE again because vCPU 1 still has the lock

vCPU 1

vCPU 0

vCPU 0 consumes its cputime for executing pause-loop



Case Study: Scheduler Mismatch

Linux CFS runqueue

vCPU 0 vCPU 1

Runtime-based Priority
High Low

Yield

Boost

30

vCPU 1

vCPU 0

Threshold

1. Picks the highest priority task: vCPU 0

2. vCPU 1 is boosted eventually because

𝑐𝑝𝑢𝑡𝑖𝑚𝑒𝑣𝐶𝑃𝑈1 − 𝑐𝑝𝑢𝑡𝑖𝑚𝑒𝑣𝐶𝑃𝑈0 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

Next task Next task



Mitigation: Debooster

• Debooster makes CFS not to hesitate to boost another vCPU instead 
of vCPU which exits due to PLE
• by lowering PLE-ed vCPU priority

31

Linux CFS runqueue

vCPU 0 vCPU 1

Runtime-based Priority
High Low

Yield

Boost

vCPU 1

vCPU 0

Threshold

vCPU 1 is boosted without wasting vCPU 0’s cputime



Implementation

• Modified Linux KVM 5.6.0

• Our mitigations require 41 LoC modification
• Debooster: yield_to_task() interface in CFS

• Strict Boost: vCPU candidate selection and IPI handler in KVM

33



Experimental Setup

• Testbed
• 8-core (Intel Xeon)

• 2 VMs with 8 vCPU for each

• Benchmarks
• dedup and vips from parsec

• psearchy from mosbench

• ebizzy

• swaptions: CPU-intensive workload co-runner in another VM

34



Evaluation: Reduction of PLE Occurrences

Dedup Vips Ebizzy Psearchy

N
o
rm

al
iz

e
d
 n

u
m

b
e
r 

o
f 
P
L
E
 e

ve
n
ts

Baseline KVM

Debooster and

Strict Boost

35



Evaluation: Performance Improvement

Dedup Vips Ebizzy Psearchy

N
o
rm

al
iz

e
d
 e

x
e
cu

ti
o
n
 t

im
e

N
o
rm

al
iz

e
d
 t

h
ro

u
gh

p
u
t

Baseline KVM

Debooster and

Strict Boost

Execution time is reduced by 40 % Throughput is improved by 75 %

36



Evaluation: System Fairness

• Co-runner’s performance degradation cannot be seen

• Mitigations do not raise the priority of the boosted vCPU

N
o
rm

al
iz

e
d
 s
w
a
p
t
i
o
n
s

e
x
e
cu

ti
o
n
 t

im
e

Baseline KVM

Debooster and

Strict Boost

37



Conclusion

• Oversubscribing vCPUs incurs excessive spinning

• Pause-Loop-Exiting (PLE) unfortunately does not fix it

• due to the semantic gap between
• KVM and guest VMs

• KVM and Linux scheduler

• Introduced mitigations against identified problems improve apps throughput by up to 75 %
• Strict Boost against lost opportunity and overboost

• Debooster against scheduler mismatch

• Problem investigated by the KVM community
• https://lore.kernel.org/kvm/20210421150831.60133-1-kentaishiguro@sslab.ics.keio.ac.jp/

• https://lore.kernel.org/kvm/1618542490-14756-1-git-send-email-wanpengli@tencent.com/

• Ishiguro, K., Yasuno, N., Aublin, P. L., & Kono, K. (2021, April). Mitigating excessive vCPU spinning in VM-
agnostic KVM (VEE ’21)

38



39

Thanks & QA

Mitigating Excessive Pause-Loop-Exiting in VM-Agnostic KVM

Contact: kentaishiguro@sslab.ics.keio.ac.jp


