
2 0 2 1 W I N D R I V E R , A L L R I G H T S R E S E R V E D

Maarten Koning
Wind River Fellow

HYPERVISOR-LESS VIRTIO FOR
REAL-TIME AND SAFETY

KVM Forum 2021

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

Open Architecture / Open Ecosystem
Multi-party Software Integration

EMBEDDED SYSTEMS
Black Box Dedicated Systems

Enclosed and Engineered Open and Orchestrated

App
1

App
2

App
3

App
n

PLATFORM SOFTWARE

…

INTEGRATION PLATFORMS
White Box Partitioned Systems

FIXED-FUNCTION EMBEDDED SYSTEMS ARE
NOW INTELLIGENT EDGE DEVICES

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

EDGE DEVICES WILL INCREASINGLY
CONTAIN LINUX

1. Edge devices have large amounts of open-source middleware & ready-made applications that are
increasingly only available for Linux.

2. Board support packages for COTS & reference hw are increasingly only available for Linux.

3. Porting code from Linux is increasingly problematic.

→ Therefore, edge devices will increasingly contain an instance of Linux.

QED //

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

Emerging Use Cases Demand Low Latency and Accelerated Processing at the Edge.

Edge
Infrastructure:

Autonomous
Devices:

Immersive
Experiences:

IoT &
Analytic:s

Wireline
PON

Autonomous
Vehicles

Augmented
Reality

Home
Devices

Wireless
vRAN, vEPC

Drones

Virtual
Reality

Industrial
Sensors

uCPE
SD-WAN

Industry
Robots

360
Video

Retail

IP Enterprise
Services

Medical

Wearable
Cognitive
Assistance

Healthcare

THE INTELLIGENT EDGE REQUIRES REACTIVITY

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

IF EDGE DEVICES WILL CONTAIN LINUX, WHERE
WILL THE REAL-TIME AND SAFETY WORKLOADS RUN?

1. On Linux when it has sufficient reactivity
→ “software-based partitioning” (Linux-only approach)

2. Beside Linux in a virtual machine
→ “virtualization-based partitioning” (Hypervisor needed)

3. Beside Linux on a compute island
→ “physical partitioning” (Hypervisor-less)

4. Beside Linux on a borrowed core
→ “whiteboard partitioning” (Be careful!)

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

Linux App

Linux
SMP

TSN App

RTOS

KVM

TSN
NIC

CPU
Core

CPU
Core

CPU
Core

Linux App

Linux
SMP

TSN App

RTOS

KVM

TSN
NIC

CPU
Core

CPU
Core

CPU
Core

Multi-core SoC

USE CASE: KVM WITH CORE ISOLATION
FOR TIME SENSITIVE NETWORKING

TSN Switch

Option #1: Through a TSN Switch

Option #2: Direct Connect

Multi-core SoC

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

REALTIME AND SAFETY WORKLOADS WITH LINUX *

L RT|S

4. Compute Islands
(Physical Partitioning)

L: Linux general-purpose workload
rt: soft realtime workload
RT: hard realtime workload
S: safety workload

Green: standard practice
Orange: Less commonly seen

(OS research / new / future)

RT|SL

3. Mixed-Criticality
(Virtual Partitioning)

Hypervisor

L rt

1. Core Reservation
(Software partitioning)

1a: User-level process
1b: unikernel
1c: KVM + rt workload
(PREEMPT_RT helpful)

RTL

2. Core Offload
(Whiteboard partitioning)

Hypervisor
optional

2a: Unsupervised AMP
2b: Partially-supervised AMP

* Assuming Linux cannot yet achieve
certification to run safety workloads.

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

(*) Linux PREEMPT_RT patch required, else expect
100s of uSec-ish for tuned Linux (PREEMPT_VOLUNTARY) or
mSec-ish for untuned (PREEMPT_NONE) Linux.

REALTIME & SAFETY WORKLOADS WITH LINUX

10s of uSec-ish soft realtime required:
→ deploy native workload as a Linux* process thread on a reserved core(s).
→ research: deploy realtime workload using Linux* KVM vCPU on a reserved core(s).

uSec-ish hard realtime required:
→ deploy RT workload beside Linux on a compute island or in a VM with a RT hypervisor.
→ research: deploy realtime workload beside Linux on a core(s) offloaded from Linux.

Safety required:
→ deploy safety workload on a compute island or in a VM with a safety hypervisor.
→ research: deploy safety workload on Safety Linux on a reserved core(s).

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

BUT HOW TO SHARE RESOURCES
BETWEEN RUNTIMES?

When workloads run on different runtimes in the same SoC, we
need the runtimes to integrate for the purposes of:

1. printf(), console and debug access
2. read/write of Linux file systems from auxiliary runtimes
3. intra-SoC messaging between Linux and auxiliary runtimes

The “de facto” approach is to use TCP/IP for this over an on-chip or
on-board ethernet switch - or via a virtual ethernet driver.

However, TCP/IP is a WAN protocol which is a heavyweight intra-SoC
solution for these local runtime integration needs.

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

WHY USE VIRTIO FOR INTRA-SoC
WORKLOAD INTEGRATION?

1. virtio is already available both in Linux and in many runtimes

2. virtio is an open specification that is transport independent

3. virtio has AF_VSOCK which is similar to AF_INET
→ our experiments show it is 10x faster than TCP/IP over virtio

4. virtio can be run over shared memory without a hypervisor
→ so-called “hypervisor-less virtio”

5. virtio has low-level devices and higher-level services too

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

HYPERVISOR-LESS VIRTIO

Define and prototype a framework for using virtio as a communication
infrastructure, while removing the constraints usually associated with the
presence of a hypervisor.
Hypervisor-less virtio PoC:

• 64-bit Intel x86_64 and ARM support
• Hardware notifications
• Selected Linux kvmtool AKA “lkvm” as the virtio back-end

→ leveraging its existing support for console, 9p file system, vsock and virtio-net.
→ added new MMIO over shared memory transport
→ enabled /dev/{vhost-vsock,vhost-net} for vhost offload without workload
virtualization.

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

GENERALIZED HYPERVISOR-LESS
VIRTIO ARCHITECTURE

Auxiliary
Runtime

ApplicationGeneral-Purpose
VMs, Containers,
and Processes

kvmtool
daemon

Linux

General-Purpose
Cores and Devices

Partitioning via core reservation, core offload, virtualization, or compute islands

File Access, Console,

IPC, Networking(Virtio)

Real-time / Safety
cores and devices

POSIX

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

SIMILARITIES / DIFFERENCES

kvmtool / lkvm on Linux as
Virtual Machine Monitor (VMM)

Guest

virtio devices

Device
configuration

Feature
bits

Device
status

virtqueues

virtio drivers*

buffers Auxiliary Runtime

kvmtool / lkvm on Linux as
Physical Machine Monitor (PMM)

virtio drivers*

virtio devices

Device
configuration

Feature
bits

Device
status

Shared memory
region definition

Shared memory
region

virtqueues buffers

Hypervisor (KVM)

* File system (9P), Console (serial), Network (virtual ethernet), IPC (vsock)

STANDARD VIRTIO HYPERVISOR-LESS VIRTIO

Front-End

Back-End

Bus (PCI, MMIO, Channel I/O)

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

HYPERVISOR-LESS VIRTIO
SHARED MEMORY LAYOUT

DTB fragment

Device 0 header

Device 0 shared memory

Device <n> header

Device <n> shared memory

…
Per-device shared memory

virtio console 24 KB

vsock 64 KB

9p 24 KB

virtio net 64 KB

Shared Memory

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

Linux

HYPERVISOR-LESS VIRTIO SCENARIOS

rt
Linux RT|S

The Linux non-realtime / non-safety services are provided to apps on auxiliary runtimes via:
• open()/close()/read()/write()/ioctl()/… for serial and file system access
• socket()/bind()/connect()/accept()/sendto()/recvfrom()/… for IPC
• PoC development strategy:

• step 1: enable printf() and file access from auxiliary runtimes using virtio
• step 2: enable AF_INET socket family over virtio ethernet
• step 3: switch to AF_VSOCK to remove IP stack requirement for auxiliary runtimes

Linux
RT

RT Hypervisor
(opt) RT|S Hypervisor

Linux RT|S

kvm

3. Mixed-Criticality
(Virtual Partitioning)

2. Core Offload
(Whiteboard partitioning)

1. Core Reservation
(Software partitioning)

4. Compute Islands
(Physical Partitioning)

= SHMEM

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

HOW IT WORKS

1. In a hypervisor-less deployment, hardware mechanisms are used to
signal device configuration and to send virtqueue notifications.

2. Upon receiving the hardware notification from the virtio front-end (i.e. the auxiliary
runtime), Linux notifies the user-level PMM (kvmtool daemon) .

3. Upon being notified via an eventFd, the PMM determines the state of the virtio
device using the device status field and its registry values and handles the request.

4. If the PMM can offload processing to vhost, it will act as a proxy between vhost
services and the auxiliary runtime by capturing and relaying notifications.

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

VSOCK-ONLY HYPERVISOR-LESS VIRTIO

A TCP/IP port to vsock port PMM proxy (a la socat & ncat) between the
host and the auxiliary runtime enables them to use vsock instead of TCP/IP.

→ yet still be reached using TCP/IP from Linux.

Example use cases:
§ debug an auxiliary runtime with GDB using a vsock GDB server on the auxiliary runtime.
§ access a shell on the auxiliary runtie using telnet or ssh with a vsock telnet/ssh daemon.
§ enable auxiliary runtimes to leverage Linux file systems using vsock-based 9p or nfs clients.
§ connect a vsock-based client/server on an auxiliary runtime to a Linux TCP/IP server/client

→ With this approach there may be less need to safety-certify an IP
stack for a safety island if it is less expensive to certify virtio vsock.

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

SIDE NOTE ON THE PERFORMANCE OF VIRTIO
MMIO WITH MSIs WITH A HYPERVISOR

TRAP
(R)

TRAP
(W)

CHECK IRQ
(R)

ACK IRQ
(W)

NOTIFY
(W)

IRQ (host
signal)

MSI (host
signal)

virtio MMIO
without MSIs

652633 652638 652615 652615 329666 660911 0

virtio MMIO
with MSIs

20 66 0 0 591161 0 1.182M

§ IRQ: 1.3M more traps, 1M more memory accesses → 600K fewer host signals
§ MSI: 2x the number of host signals is due to 80%+ higher bandwidth

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

SIDE NOTE ON THE PERFORMANCE OF
VIRTIO/PCI VS VIRTIO/MMIO WITH A HYPERVISOR

Test Virtio PCI Virtio MMIO
without MSI

Virtio MMIO
with MSI

TCP_RR (host -> guest) 20182 11009 20352

TCP_RR (guest -> host) 20463 10955 20058

§ TCP_RR measures round trip latency (more trans/s = lower latency)
§ Host is a Walnut Canyon system with Ubuntu
§ Guest is Yocto Linux running via LKVM

→ Virtio MMIO + MSI (Message Signaled Interrupts) is as fast
as virtio over PCI

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

CONCLUSIONS

1. There are use cases for auxiliary runtimes at the edge;
those runtimes need way to integrate with Linux ; and virtio can
help - such as for console, network, file systems and IPC.

2. Compute islands can remove the need for virtualization to enable
real-time or safety workloads with Linux-based systems – and they can
still use virtio for multi-OS integration using hypervisor-less virtio.

3. Virtio over MMIO with MSIs is as fast as virtio over PCI (and has a smaller
implementation making it potentially more suitable for safety cert).

4. AF_VSOCK sockets can be 10x faster than AF_INET TCP/IP sockets and
also AF_VSOCK also has a much smaller implementation.

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

KVMTOOL LINKS

kvmtool was forked to enable its use as an hypervisor-less virtio back-end. It is on the
OpenAMP GitHub since this work is being done as part of the OpenAMP Application Services
Working Group activities:

https://github.com/OpenAMP/kvmtool

More info on OpenAMP activities is here:

https://www.openampproject.org/news/

MMIO MSI support for kvmtool is here:
https://github.com/OpenAMP/kvmtool/tree/mmio_msi

https://github.com/OpenAMP/kvmtool
https://www.openampproject.org/news/
https://github.com/OpenAMP/kvmtool/tree/mmio_msi

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

https://vmsplice.net/~stefan/stefanha-kvm-forum-2015.pdf

https://vmsplice.net/~stefan/stefanha-kvm-forum-2015.pdf

2
0

2
1

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

THANK YOU

Take a tour of the capabilities at:

www.windriver.com/studio/tour

THE PLATFORM FOR MISSION-CRITICAL INTELLIGENT SYSTEMS

