
Towards asynchronous revert in
QEMU

Denis V. Lunev
den@openvz.org

Contents

● Background snapshot
● Asynchronous revert to sna
● Performance results
● Future

Background snapshot - asynchronous beast
Something very straightforward

Create snapshot

● Stop VM CPUs
● Commit all pending IO
● Save CPU/devices state
● Save RAM
● Make virtual disk snapshot
● Start VM CPUs

VM state storage: by default inside QCOW2
● There is no infrastructure in QEMU to maintain

writes into two different disk states

Create background snapshot

● Stop VM CPUs
● Commit all pending IO
● Save CPU/devices state
● Protect VM memory for write
● Make disk snapshot
● Start VM CPUs
● Store VM memory in background
● Save memory pages written by guest out of order

VM state storage

● Writing into 2 different states of the same disk in
QEMU is not allowed

● Generic migration approach
○ Send migration stream via socket outside
○ Save into external file

● Spoiler: would be useful on restore

Implementation: interface

● Special migration mode:
{ 'execute': 'migrate-set-capabilities',
 ‘arguments’: { 'capabilities': [{‘capability’:
 ‘background-snapshot’, ‘state’: ‘true’}] } }

● Start migration normally:
virsh save VMname state-filename

● Easy testing
virsh restore state-filename

Dirty tracking

● Protect VM memory for WRITE using user-fault-fd
with write-protect (since Linux 5.7)

● Send modified page via migration stream socket
● Unprotect page
● Scan memory in the background from the side

thread

Asynchronous revert to snapshot
A bit more complicated stuff...

Revert to snapshot: standard

● Start QEMU
● Load the whole migration stream
● Start the guest
● The time of stream loading is increased with VM

size. Knowingly weird!

Asynchronous revert to snapshot

● Start QEMU
● Load devices state (small, fixed size)
● Start the guest
● Load VM memory in the background
● Load memory pages accessed the by guest out of

order
● No page addressing in the migration stream!

VM state storage

● Any public format change is expensive
● Public protocols are very costly to change too
● The idea:

○ replace libvirt IO helper with a new tool
○ convert migration stream at save
○ read new data in the same tool on revert

QEMU snapshot tool

● Start as a migration source in pre-copy mode
● Transfer devices state
● Transfer some memory (optional)
● Switch migration into post-copy mode

○ start the guest
● No need for separate control channel

Storing format: QCOW2!

● QCOW2 stores data addressed from 0 to
something called “virtual size”

● Store RAM as data
● Store devices state as usual

QEMU snapshot tool (continued)

● Special migration mode:
'{"execute": "migrate-set-capabilities", "arguments":
 {"capabilities": [{"capability": "postcopy-ram", "state": true}]}}'

● Start incoming migration:
'{"execute":"migrate-incoming", "arguments":
 { "uri":"exec:qemu-snapshot --revert --postcopy=0 state.qcow2"}}'

Performance results
Something we are fighting for...

Performance: snapshot creation

Performance: revert to snapshot

Future work
Cool and shiny tomorrow

Current state

• UFFD merged into Linux 5.7
• Background snapshot is merged into QEMU 6.0
• qemu-snapshot-tool sent as RFC at May 12 2021

https://lists.gnu.org/archive/html/qemu-devel/2021-05/msg03587.html

Performance bottlenecks

● Single threaded UFFD
○ create several UFFDs by address ranges
○ true multithreaded UFFD

● No pre-populated memory in guest
○ track accessed memory on snapshot

www.virtuozzo.com

@VirtuozzoInc

www.linkedin.com/company/virtuozzo

Questions?

