Virtuozzo

Towards asynchronous revert in
QEMU

Denis V. Lunev
den@openvz.org

B

Contents

Background snapshot
Asynchronous revert to sna
Performance results
Future

Virtuozzo

Background snapshot - asynchronous beast

Something very straightforward

B

Create snapshot

Stop VM CPUs

Commit all pending 10
Save CPU/devices state
Save RAM

Make virtual disk snapshot
Start VM CPUs

Virtuozzo

B

VM state storage: by default inside QCOW?2

e There is no infrastructure in QEMU to maintain
writes into two different disk states

Virtual disk data -
Saved read-only disk sate (" Current read-write disk state %

Virtual disk data

Disk size, visible to guest Saved VM state

Virtuozzo

B

Create background snapshot

Stop VM CPUs

Commit all pending 10

Save CPU/devices state

Protect VM memory for write

Make disk snapshot

Start VM CPUs

Store VM memory in background

Save memory pages written by guest out of order

Virtuozzo I

B

VM state storage

e Writing into 2 different states of the same disk in
QEMU is not allowed
e (Generic migration approach

o Send migration stream via socket outside
o Save into external file

e Spoiler: would be useful on restore
ot)
Libvirt

)

>;/ Libvirt 1O helper\‘

\ J N B _,im

= -
| / - -\\> IMigration stream (% J
= —

Virtuozzo

B

Implementation: interface

e Special migration mode:
{ 'execute’: 'migrate-set-capabilities’,
‘arguments’: { 'capabilities”: [{‘capability’:
‘background-snapshot’, ‘state’: ‘true’l] } }

e Start migration normally:
virsh save VMname state-filename

e Easy testing

virsh restore state-filename

Virtuozzo

B

Dirty tracking

e Protect VM memory for WRITE using user-fault-fd
with write-protect (since Linux 5.7) r

e Send modified page via migration stream socket

Unprotect page

e Scan memory in the background from the side
thread

Write protect, UFFD
e

UFFD
O » QEMU Page >[Libvirt 10 helper] > HDD

Virtuozzo

RAM

Asynchronous revert to snapshot

A bit more complicated stuff...

B

Revert to snapshot: standard

Start QEMU

Load the whole migration stream

Start the guest

The time of stream loading is increased with VM
size. Knowingly weird!

Virtuozzo

B

Asynchronous revert to snapshot

Start QEMU

Load devices state (small, fixed size)

Start the guest

Load VM memory in the background

Load memory pages accessed the by guest out of
order

No page addressing in the migration stream!

Virtuozzo

B

VM state storage

e Any public format change is expensive
e Public protocols are very costly to change too

e The idea:

o replace libvirt 10 helper with a new tool
o convert migration stream at save
o read new data in the same tool on revert

»(QEMU snapshot tool) Convert to on-disk fomiat

IMigration stream T
O
QEMU &)

Virtuozzo

B

QEMU snapshot tool

Start as a migration source in pre-copy mode
Transfer devices state
Transfer some memory (optional)

Switch migration into post-copy mode
o start the guest

e No need for separate control channel
- < Convert from on-disk format
Start postcopy migration T —
= > %9
Virtuozzo

I_ Storing format: QCOW?2!

e QCOW?2 stores data addressed from O to
something called “virtual size”

e Store RAM as data

e Store devices state as usual

Virtual disk data: RAM

Y A]
Disk size equals to physical address space size Devices state

Virtuozzo

B

QEMU snapshot tool (continued)

e Special migration mode:
'{"execute": "migrate-set-capabilities", "arguments":
{"capabilities": [{"capability": "postcopy-ram", "state": true}1}}'

e Start incoming migration:

'{"execute":"migrate-incoming", "arguments":
{ "uri":"exec:gemu-snapshot --revert --postcopy=0 state.qcow2"}}'

Virtuozzo

Performance results

Something we are fighting for...

B

Performance: snapshot creation

Snapshot creation, sec Downtime, sec
B Snaphot [BG snapshot B Snapshot [BG snapshot
20 15

15

10

(63}

1GB 4GB 1GB 4GB

Virtuozzo

B

Performance: revert to snapshot

Snapshot revert, sec Downtime, sec

@ Snaphot [BG snapshot B Snapshot [BG snapshot
10 10
8 8
6 6
4 4
2 2
0 0

1GB 4GB 1GB 4GB

Virtuozzo

Future work

Cool and shiny tomorrow

B

Current state

* UFFD merged into Linux 5.7
« Background snapshot is merged into QEMU 6.0
« gemu-snapshot-tool sent as RFC at May 12 2021

https://lists.gnu.org/archive/html/gemu-devel/2021-05/msg03587.html

Virtuozzo I

B

Performance bottlenecks

e Single threaded UFFD

o create several UFFDs by address ranges
o true multithreaded UFFD

e NoO pre-populated memory in guest
o track accessed memory on snapshot

Virtuozzo

Questions?

y 4 .
V www.virtuozzo.com

G @Virtuozzolnc

@ www.linkedin.com/company/virtuozzo

Virtuozzo

