
Klaus Jensen <k.jensen@samsung.com>

Samsung Electronics

QEMU Emulated NVMe

Lessons Learned and Future Work

NVMe in 1 Slide

• Non-Volatile Memory Express

• Designed to exploit the low latency and inherent parallelism of
NAND flash memory

• Core terminology required for this talk

– Controller – a PCI Express† function that acts as the interface
between a Host and an NVM Subsystem

– Namespace – a quantity of non-volatile memory, accessed
independently from other namespaces, typically by logical block
addresses

– NVM Subsystem – A set of one or more Controllers, zero or
more Namespaces and one or more Ports

† We will only consider the PCIe-based transport of NVMe

Emulated NVMe Timeline

• Initial implementation by Keith did the

job for several years

• I was working with the OpenChannel

SSD ecosystem in 2018-19 and was

using QEMU on a day to day basis

– Started to add missing mandatory

features

– Started working on multiple namespace

support in an effort to upstream OCSSD

support (abandoned)

– Became a co-maintainer along with

Keith in mid-2020

2013
Keith posts an initial

implementation of an

emulated NVMe device
2017
Stephen adds support for the

Controller Memory Buffer

2020
I bump the NVMe version

to v1.3 and add multiple

namespace support

2020
Dmitry adds support for

Zoned Namespaces

2021
Minwoo adds support for

NVM Subsystems and

Namespace Sharing

2021
Appala and I add support for

Metadata and End-to-End

Data Protection

Emulated NVMe Timeline

• Things moved pretty fast

• As we shall see, sometimes a bit too fast

• Some mistakes were made due to

– not knowing about best practices or how to effectively use the

available APIs

– not fully grasping QDev/QOM

So, lessons…

Speaking of APIs…

• Initially, I had trouble grok’ing QDev vs. QOM

– Because - It’s not a ‘vs’

– QDev builds on QOM

– QDev provides an API tuned for setting up user created

devices

– However, QDev imposes a strict structure (ordered tree)

where every alternating level is either a “bus” or a “device”

A bit of history

• NVMe device first introduced (by Keith Busch, 2013) with

single-namespace support
-device nvme,drive=DRV

• I wanted to add support for multiple namespaces, that
would have separate block backends and separate drive-

related parameters (logical_block_size, etc.)

– Lots of helpful comments from the community

– Ended up adding a new -device nvme-ns and plumb it with

a QDev bus (it’s sort-of how hw/scsi does it)

QDev Bus-based Plumbing

• The device nicely fits into the QDev tree and introspection
just works (info qtree)

• If a device is removed, all devices on child busses are

recursively unrealized

– This design made a lot of sense when multiple namespace

support was merged (waaaay back in 2019)

– And this should be a good thing…

• … but if we add subsystems and shared namespace functionality

to the mix – not so much

NVMe Plumbing (pre-v6.0)

(device) nvme

-device nvme-ns

-device nvme-ns

(device) q35-pci-host (bus) pcie.0

(bus) nvme-bus

no parent (bus) main-system-bus

Shared Namespaces

• A Shared Namespace refers to a Namespace that may be

accessed concurrently by two or more Controllers within

the same NVM Subsystem

– Quite useful for testing advanced drivers and multi-path I/O,

so we wanted to support this

• Required adding the concept of an NVM Subsystem to
hw/nvme

Mistake: Just use -device

• Because I (or anyone else interested in hw/nvme at the

time) still didn’t know any better we merged the subsystem
support implemented as a bus-less and “un-rooted” -

device

– Added subsys link parameter on controller device to plumb it

to a subsystem

– It followed the design of the nvme-ns (namespace) device

and it felt like the way to do it

NVMe Plumbing (v6.0)

(device) nvme

-device nvme-ns

-device nvme-ns

(device) q35-pci-host (bus) pcie.0

no parent (bus) main-system-bus

(device) nvme-subsystem

busless

(bus) nvme-bus

The nvme-ns devices registers

with the subsystem and if
shared=on, they become

“attached”(in NVMe terms) to

both controllers

(device) nvme (bus) nvme-bus

NVMe Plumbing (v6.0)

(device) nvme

-device nvme-ns

-device nvme-ns

(device) q35-pci-host (bus) pcie.0

no parent (bus) main-system-bus

(device) nvme-subsystem

busless

(bus) nvme-bus

nvme-ns devices can only be

attached (in QDev terms this

time) to 1 nvme-bus

(device) nvme (bus) nvme-bus

NVMe Plumbing (v6.0)

(device) nvme

-device nvme-ns

-device nvme-ns

(device) q35-pci-host (bus) pcie.0

no parent (bus) main-system-bus

(device) nvme-subsystem

busless

(bus) nvme-bus

What happens if we remove
(device_del, aka hot-plug) the

first controller?

(device) nvme (bus) nvme-bus

NVMe Plumbing (v6.0)

(device) nvme

-device nvme-ns

-device nvme-ns

(device) q35-pci-host (bus) pcie.0

no parent (bus) main-system-bus

(device) nvme-subsystem

busless

(bus) nvme-bus

The nvme-ns devices are

automatically unrealized

(device) nvme (bus) nvme-bus

NVMe Plumbing (the “fix”)

(device) nvme

-device nvme-ns

-device nvme-ns

(device) q35-pci-host (bus) pcie.0

no parent (bus) main-system-bus

(device) nvme-subsystem

busless

(bus) nvme-bus

Add another instance of
nvme-bus to the subsystem

device and re-parent the nvme-ns

devices if a subsystem is

configured

(device) nvme (bus) nvme-bus

(bus) nvme-bus

How do we fix this properly?

• Implement a hot-plug handler to “fail-over” the namespaces

to another controller?

• If we started from scratch, we could

– make the nvme-subsys device a system bus device that

exposes an nvme-bus

– keep the nvme-ns devices as-is and they would attach to the

nvme-bus created by the subsystem instead

– remove the nvme-bus that the nvme controller device used to

create

How do we fix this properly?

(device) nvme

-device nvme-ns

-device nvme-ns

(device) q35-pci-host (bus) pcie.0

no parent (bus) main-system-bus

(device) nvme-subsystem

(device) nvme

(bus) nvme-bus

LGTM, or can we do better?

How do we fix this properly?

• Potential issues with the system bus approach

– Backwards compatibility issues…

• Requires adding new devices and deprecating existing ones

– The nvme controller device must still be attached under the

PCI bus, so it must backlink itself out of the tree to reach the

subsystem device anyway

Retains the idea of subsystems and namespaces being

considered devices

How do we fix this properly?

• hw/scsi also separates the controller from the drives and

exploits QDev buses

– It uses -device for both controllers and drives, so something

must be right here?

– But, the one-parent restriction have also impeded the addition
of multipath I/O in hw/scsi
Hannes Reinecke attempted this back in 2017 and noted that he would

constantly run into the restrictions of the ordered tree

• No other QEMU subsystem seems to support “shared”
block devices like hw/nvme does

Rethinking the model

• What if… Subsystems and Namespaces were not modeled as
devices

– Neither subsystems or namespaces expose virtual hardware (e.g.
memory, IRQs,…) to the guest

– Conceptually, a subsystem is the parent of controllers, but a
subsystem is not a PCI device (how would this fit into the qtree?)

– Namespace may be associated with (i.e., children of) multiple
controllers (but in QDev, devices can only have one parent)

– Fundamentally, they are concepts in a device model and happen
to benefit design-wise from being independent devices

• User creatable objects (-object) might be more appropriate

Rethinking the model

• No existing devices use –object’s like this

– Use of -object memory-backend-{file,memfd,ram}

comes close (i.e NVMe PMR support)

• I gave it a shot

The hw/nvme “devpocalypse”

• RFC patch series posted late August
– 13 files changed, 2519 insertions(+), 1164 deletions(-)

– Ouch… considering hw/nvme is ~8500 LOC in total

• Major refactoring of the hw/nvme subsystem

– Introduces NVM Subsystems and Namespaces as user

creatable objects

The hw/nvme “devpocalypse”

• Series goals

– Introduce a new experimental controller device
(x-nvme-ctrl)

– Introduce new experimental user creatable objects

• x-nvme-ns-{nvm,zoned}

• x-nvme-subsystem

The hw/nvme “devpocalypse”

• Series goals (continued)

– Exploit the QEMU Object Model

• The x-nvme-ns abstract object provides the base

implementation of NVMe namespace types

• The x-nvme-ns-zoned derives from the x-nvme-ns-nvm

object

The hw/nvme “devpocalypse”

• Series goals (continued)

– Retain backwards compatibility by keeping the existing

devices around

• Uses the new object code internally, no code duplication

• Deprecate the subsystem and namespace devices as the

experimental objects stabilizes

The hw/nvme “devpocalypse”

• Perks of introducing brand new models

– Easy clean-up of some confusing device parameters

• Controller

– msix_qsize → max-intr-vectors

– aer_max_queued → max-aer-retention

– Remove unofficially deprecated num_queues, use-intel-id

• Namespace

– Fix Simple Copy related parameters that should have been
defined in bytes and not LBAs

– Remove the eui64-default compatibility parameter

– detached, shared → attach-to

• Subsystem

– nqn → subnqn

The hw/nvme “devpocalypse”

• Set up a subsystem

-object x-nvme-subsystem,id=subsys-1

The hw/nvme “devpocalypse”

• Adding controllers

-device x-nvme-ctrl,id=ctrl-1,subsys=subsys-1

The hw/nvme “devpocalypse”

• Adding namespaces and attach to specific controllers
-object x-nvme-ns-nvm,id=ns-nvm-1,subsys=subsys1, \

attached-to=ctrl-1, \

attached-to=ctrl-3

-object x-nvme-ns-zoned,id=ns-zoned-1,subsys=subsys1, \

attached-to=all

-device vs -object

• Properties are more verbose to define

DEFINE_PROP_UUID(“uuid”, NvmeNamespace, uuid)

char *get_uuid(Object *obj, Error **errp) {

NvmeNamespace *ns = NVME_NAMESPACE(obj);

char *str = g_malloc(UUI_FMT_LEN + 1);

qemu_uuid_unparse(&ns->uuid, str);

return str;

}

void set_uuid(Object *obj, const char *v, Error **errp) {

NvmeNamespace *ns = NVME_NAMESPACE(obj);

if (qemu_uuid_parse(v, &ns->uuid) < 0) {

error_setg(errp, “invalid UUID”);

}

}

object_property_add_str(oc, get_uuid, set_uuid);

-device vs -object

• No “realize” phase as in QDev

– Use a “machine done notifier” to emulate this

• If you do not use object composition
(object_initialize_child), you are responsible for

cleaning up

Lesson Learned

• Consider all your options when deciding on your model

– Should my device be split into individual parts?

– Is this part really a -device or an -object?

• Aka, does it behave like a device? (i.e. expose virtual hardware or

memory regions?)

• … does it quack?

– The flexibility of a user creatable object might be just what you

are looking for…

• … if you can get by without the luxury of the QDev APIs!

Future Work

Future Work

• Get rid of the QEMUSGList/QEMUIOVector duality

– The device code deals with both

• QEMUSGList’s for use with the DMA-helpers (controller/host

transfers)

• and with QEMUIOVector’s for controller-only transfers (CMB,

PMR, Verify, Copy, etc.)

– Consider open-coding DMA-mapping and transfer while

processing command payloads (PRPs/SGLs) incrementally

• Removes the need for the temporary QEMUSGList data structure

• Allow incremental T10 Data Integrity calculations

Future Work

• Polling NVMe drivers relies on continuously reading the

completion queue head for a change in the phase bit

instead of waiting for an interrupt

– Profiling using QEMU is not easy since there are a lot of

various places that introduce latency in the emulated device

– Limit these latencies

• In-memory and no-op I/O

• Use iothread for queue processing

Future Work

• Para-virtualization features in NVMe

– Shadow Doorbell and EventIdx buffers

• The host may provide two separate memory buffers that mirror the
controller doorbell registers

• Reduces number of vmexits by reducing MMIO

– Some existing patches floating around from when this was a
Google Vendor Extension

• Can the emulated device possibly be made faster (latency-
wise) than available hardware?

– Or, how low can we go? Good enough for profiling?

– Is this a hopeless endeavor?

