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Background

Mapping guest memory into host userspace is a common practice in 

current KVM, to

• Provide emulation(e.g. in KVM/Qemu/vhost-user etc.).

• Facilitate GPA -> HPA translation.

Requirement changes when KVM is no longer inside the TCB:

• Guest private memory shall not be accessible to the host.



Background

• Intel® TDX uses MKTME engine, to
▪ Enable memory encryption.

▪ Provide memory integrity protection.

• MKTME with Integrity Architecture offers 

mechanism to
▪ Prevent cyphertext analysis.

▪ Prevent data modification without detection. 



Background

• MKTME Message Authentication 
Code(MAC).
▪ Associated with each cache line.

▪ A 28-bit metadata stored in ECC bits.

▪ Generated when a cache line is written to 
memory.

▪ Verified when a cache line is loaded from 
memory.

• TD-owner bit.

• CPU poisons cache line when memory 
integrity check fails.
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Background

• On subsequent consumption of a poisoned cache line:

▪ #MCE

▪ Unbreakable shutdown.

• Incorrect or malicious writes from to TD private memory may lead to 

system crash. 

• Solution: map private memory to one specific guest only.

▪ No mappings in other guests.

▪ No mappings in host userspace.



Unmapping Requirement

No need to map all guest memory in HVA as long as
• GPA -> HPA translation can be done.

• Shared buffer is known to the host.

Private vs. Shared
• Private

▪ Guest page tables

▪ Guest code pages

▪ Guest normal data

• Shared
▪ Guest DMA buffers(SWIOTLB buffer & dma_direct_alloc() pages )

▪ PV clock

How to unmap & how to get GPA->HPA?



Design Target

About unmapping

• Sharing/unsharing requested only by guest.
▪ Guest kernel

▪ Virtual BIOS (e.g., TDVF)

• Host page table still managed by Linux MM, not by KVM.

• Kernel direct mapping *can* also be removed.

• Transition between sharing and unsharing.

About GPA-> HPA translation

• 1:1 <ASID, GPA> : HPA association.

• No impact on normal VM mappings.



Option 1 – struct page based

Unmapped Guest Memory

• Guest memory still mmap()ed during VM creation time.

• HVA -> HPA translations blocked, with PFN information kept in  host PTE.

• SIGBUS generated to userspace on private memory accesses.

GPA->HPA translation

• New GUP flags (e.g.,  FOLL_ALLOW_POISONED / FOLL_GUEST) to get PFN.

• 1:1 association between <ASID, GPA> and HPA relies on TDX module.

• Does not work for memory that isn't backed by 'struct page’



Option 1 – struct page based

• V1 – HWPOISON [1]

▪ Leverages existing flag in struct page: PG_hwpoison.

▪ Unmaps HVA in host page table by KVM, with a SWP_HWPOISON entry in PTE.

• V2 – PageGuest [2]

▪ Introduces new struct page flag PG_guest.

▪ Introduces new mprotect() flags and new VMA flags.

▪ Maps/unmaps HVA by Linux MM.

[1] https://lore.kernel.org/kvm/20210402152645.26680-1-kirill.shutemov@linux.intel.com/

[2] https://lore.kernel.org/kvm/20210521123148.a3t4uh4iezm6ax47@box/

https://lore.kernel.org/kvm/20210402152645.26680-1-kirill.shutemov@linux.intel.com/
https://lore.kernel.org/kvm/20210521123148.a3t4uh4iezm6ax47@box/


Option 1 – struct page based
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Option 2 – fd based

Unmapped Guest Memory
• Guest private memory backed by an "enlightened" file descriptor. [3]

• File descriptor is dedicated and private.

▪ Not sharable between multiple processes.

▪ Not mappable into userspace.

• New fcntl() flags - F_SEAL_GUEST

▪ To convert the entire file to guest private memory.

▪ To truncate the file size to 0.

• Similar proposal in KVM Forum 2019 (to decouple TDP translation with host page table). [4]

[3] https://lore.kernel.org/lkml/20210824005248.200037-1-seanjc@google.com/

[4] https://static.sched.com/hosted_files/kvmforum2019/48/kvm-forum-vm-memory-mgmt.pdf

https://lore.kernel.org/lkml/20210824005248.200037-1-seanjc@google.com/
https://static.sched.com/hosted_files/kvmforum2019/48/kvm-forum-vm-memory-mgmt.pdf


Option 2 – fd based

GPA -> HPA translation
• New memslots for guest private memory, possibly a new address space.

• New private ops in memslot offered. E.g.,

▪ Ops from backing store 

‒ gfn_to_pfn() by struct file + offset -> HPA.

‒ pfn_mapping_level() for huge page mapping.

▪ Ops from KVM to support invalidation/swap/migrate a GFN range.
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Option 2 – fd based

Pros
• With fd dedicated to one guest, easy to enforce 1:1 <ASID, GPA> : HPA association.

• Small footprint with much less host page table populated.

• Lower probability of making private memory accessible.

• Easy to support memory not backed with struct page.

Cons
• Significant changes in KVM. E.g.,

▪ New ioctls to punch holes in memslots when converting private -> shared.

▪ Number of shared memslots could be large 

• More reliance on backing store support.

• Non-trivial changes in VFIO interface(if assigned device is desired).



Conclusion

• Unmapped guest memory is not only possible, but also desirable.

• 1:1 <ASID, GPA> : HPA association is feasible, but with cost.

• Let’s make the cost affordable. ☺
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