NUTANIX

Support for Fast and Reliable VMM Live Upgrades in Libvirt

Soham Ghosh, Prachatos Mitra

Problems with VMM upgrades

Agenda

Design and implementation

Results and Future work

Problems with VMM upgrades

Problems with VMM upgrades

- VMs are live migrated to another host and migrated back
 - Requires a long maintenance window

- Issues we face with live migration
 - Non-deterministic
 - Guest impact
 - Resource contention

As a result, VMM upgrades are deferred by system admins

Our solution

- Upgrading VMM through Local live migration
 - Using existing Libvirt migration workflow
 - No memory copy required
 - No dirty-logging and throttling

Can upgrade VMMs with near-zero downtime

Minimal maintenance window required

Local migration workflow

Design and implementation

Design challenges

- Keeping the machine ABI unchanged
 - libvirt expects name and UUID of a VM to be unique
 - Handling absolute path dependencies on UUID / name
- Modifying migration phases to work on the same host
 - Modifying remote migration phases
 - Resolving the correct domain object

Avoiding the memory copy

Bypassing memory copy

Handling Qemu monitor and log files

Begin Phase (Source)

Prepare Phase (Remote)

Perform Phase (Source)

Finish Phase (Remote)

Confirm Phase (Source)

Changes to migration flow

Source hash table

VM1 UUID	VM1
VM2 UUID	VM2
VM3 UUID	VM3

Remote hash table (New)

VM1 UUID	VM1#

Begin Phase (Source)

Prepare Phase (Remote)

Perform Phase (Source)

Finish Phase (Remote)

Confirm Phase (Source)

Results and future work

Demo

yum update qemu-kvm

Initiate qemu upgrade from package manager

virsh migrate --local <domain id>

Local migrate VM to new qemu binary

<u>Demo link</u>

Results - migration time

VM2 - 4 vCPUs, 16 GB memory (nested)

VM3 - 6 vCPUs, 24 GB memory (nested)

VM4 - 8 vCPUs, 32 GB memory (nested)

Total migration time with workload

Workload: High write-throughput (n=x, m=y, l=z) = x threads dirtying y GB of memory at z GB/s

Results - downtime

Migration downtime with workload

VM1 - 2 vCPUs, 8 GB memory (nested)

VM2 - 4 vCPUs, 16 GB memory (nested)

VM3 - 6 vCPUs, 24 GB memory (nested)

VM4 - 8 vCPUs, 32 GB memory (nested)

Workload: High write-throughput (n=x, m=y, l=z) = x threads dirtying y GB of memory at z GB/s

Conclusion and Future Work

- We have enabled Qemu upgrade using local migration
 - ~1s migration time
 - < 50ms downtime

- Extending FD transfer framework to all types of devices
 - Passthrough devices
- Continuing to upstream the patches

NUTANIX

Thank you

Contact soham.ghosh@nutanix.com prachatos.mitra@nutanix.com