
Support for Fast and Reliable
VMM Live Upgrades in Libvirt

S E P T E M B E R 2 0 2 1 | K V M F O R U M

Soham Ghosh, Prachatos Mitra

V M M L I V E U P G R A D E S U S I N G L O C A L M I G R A T I O N | K V M F O R U M

| 2

Agenda

1

2

3

Problems with VMM upgrades

Results and Future work

Design and implementation

Problems with VMM upgrades

V M M L I V E U P G R A D E S U S I N G L O C A L M I G R A T I O N | K V M F O R U M 2 0 2 1

Problems with VMM upgrades

• VMs are live migrated to another host and migrated back

• Requires a long maintenance window

• Issues we face with live migration

• Non-deterministic

• Guest impact

• Resource contention

• As a result, VMM upgrades are deferred by system admins

| 4

V M M L I V E U P G R A D E S U S I N G L O C A L M I G R A T I O N | K V M F O R U M 2 0 2 1

Our solution

• Upgrading VMM through Local live migration

• Using existing Libvirt migration workflow

• No memory copy required

• No dirty-logging and throttling

• Can upgrade VMMs with near-zero downtime

• Minimal maintenance window required

| 5

V M M L I V E U P G R A D E S U S I N G L O C A L M I G R A T I O N | K V M F O R U M 2 0 2 1

Local migration workflow
| 6

libvirt

VM1

qemu (6.1.0) qemu (6.1.1)

Local
migration

Host 1

/usr/bin/qemu-x86-6.1.0/usr/bin/qemu-x86-6.1.1

V M M L I V E U P G R A D E S U S I N G L O C A L M I G R A T I O N | K V M F O R U M 2 0 2 1

(yum update)

Design and implementation

V M M L I V E U P G R A D E S U S I N G L O C A L M I G R A T I O N | K V M F O R U M 2 0 2 1

Design challenges

• Keeping the machine ABI unchanged

• libvirt expects name and UUID of a VM to be unique

• Handling absolute path dependencies on UUID / name

• Modifying migration phases to work on the same host

• Modifying remote migration phases

• Resolving the correct domain object

• Avoiding the memory copy

| 8

V M M L I V E U P G R A D E S U S I N G L O C A L M I G R A T I O N | K V M F O R U M 2 0 2 1

Bypassing memory copy
| 9

libvirt

VM1

qemu 6.0.0

VM1

qemu 6.1.0

Local migration

Fetch fd for
memory backend

fetch-backingfd
QMP command

Transfer memory
backend fd

V M M L I V E U P G R A D E S U S I N G L O C A L M I G R A T I O N | K V M F O R U M 2 0 2 1

Handling Qemu monitor and log files
| 10

VM1 paths
(domain id 1)

Begin Phase (Source) Prepare Phase (Remote)

Finish Phase (Remote)

Perform Phase (Source)

Confirm Phase (Source)

VM1# paths
(domain id 2)

/var/lib/libvirt/qemu/domain
-<VM1 UUID>/monitor.sock

Monitor socket path
/var/lib/libvirt/qemu/domain-

<domain-id-1>-<VM1
UUID>/monitor.sock

Monitor socket path (new format)

/var/lib/libvirt/qemu/domain-
<domain-id-2>-<VM1#
UUID>/monitor.sock

Symlink

Symlink

V M M L I V E U P G R A D E S U S I N G L O C A L M I G R A T I O N | K V M F O R U M 2 0 2 1

Changes to migration flow
| 11

Source hash table

Begin Phase (Source) Prepare Phase (Remote)

Finish Phase (Remote)

Perform Phase (Source)

Confirm Phase (Source)

Remote hash table
(New)

VM2 UUID

VM3 UUID

VM2

VM3

VM1#VM1 UUIDVM1VM1 UUID

V M M L I V E U P G R A D E S U S I N G L O C A L M I G R A T I O N | K V M F O R U M 2 0 2 1

Results and future work

V M M L I V E U P G R A D E S U S I N G L O C A L M I G R A T I O N | K V M F O R U M 2 0 2 1

Demo

yum update qemu-kvm
Initiate qemu upgrade from

package manager

virsh migrate --local <domain id> Local migrate
VM to new
qemu binary

| 13

V M M L I V E U P G R A D E S U S I N G L O C A L M I G R A T I O N | K V M F O R U M 2 0 2 1

Demo link

https://www.youtube.com/watch?v=f_u1daw39iY

Results – migration time
| 14

V M M L I V E U P G R A D E S U S I N G L O C A L M I G R A T I O N | K V M F O R U M 2 0 2 1

0

10

20

30

40

50

60

70

VM1
n=2,m=6,l=8

VM2
n=4,m=15,l=16

VM3
n=6,m=23,l=24

VM4
n=8,m=31,l=32

Ti
m

e
to

 m
ig

ra
te

 (
s)

Total migration time with workload

FD passing Iterative memory copy External migrations

0

200

400

600

800

1000

VM1
n=2,m=6,l=8

VM2
n=4,m=15,l=16

VM3
n=6,m=23,l=24

VM4
n=8,m=31,l=32

Ti
m

e
to

 m
ig

ra
te

 (
m

s)

Total migration time (FD passing)

FD passing

VM1 – 2 vCPUs, 8 GB memory (nested)
VM2 – 4 vCPUs, 16 GB memory (nested)
VM3 – 6 vCPUs, 24 GB memory (nested)
VM4 – 8 vCPUs, 32 GB memory (nested)

Workload: High write-throughput
(n=x, m=y, l=z) = x threads dirtying y GB of memory at

z GB/s

Results – downtime
| 15

V M M L I V E U P G R A D E S U S I N G L O C A L M I G R A T I O N | K V M F O R U M 2 0 2 1

0

50

100

150

200

250

300

350

400

VM1
n=2,m=6,l=8

VM2
n=4,m=15,l=16

VM3
n=6,m=23,l=24

VM4
n=8,m=31,l=32

D
ow

nt
im

e
(m

s)

Migration downtime with workload

FD passing Iterative memory copy External migrations

VM1 – 2 vCPUs, 8 GB memory (nested)
VM2 – 4 vCPUs, 16 GB memory (nested)
VM3 – 6 vCPUs, 24 GB memory (nested)
VM4 – 8 vCPUs, 32 GB memory (nested)

Workload: High write-throughput
(n=x, m=y, l=z) = x threads dirtying y GB of memory at

z GB/s

Conclusion and Future Work
• We have enabled Qemu upgrade using local migration

• ~1s migration time

• < 50ms downtime

• Extending FD transfer framework to all types of devices

• Passthrough devices

• Continuing to upstream the patches

| 16

V M M L I V E U P G R A D E S U S I N G L O C A L M I G R A T I O N | K V M F O R U M 2 0 2 1

Thank you
Contact

soham.ghosh@nutanix.com
prachatos.mitra@nutanix.com

mailto:soham.ghosh@nutanix.com
mailto:prachatos.mitra@nutanix.com

