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Problems with VMM upgrades
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Problems with VMM upgrades

• VMs are live migrated to another host and migrated back

• Requires a long maintenance window

• Issues we face with live migration

• Non-deterministic

• Guest impact

• Resource contention

• As a result, VMM upgrades are deferred by system admins
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Our solution

• Upgrading VMM through Local live migration

• Using existing Libvirt migration workflow

• No memory copy required

• No dirty-logging and throttling

• Can upgrade VMMs with near-zero downtime

• Minimal maintenance window required
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Local migration workflow
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libvirt

VM1

qemu (6.1.0) qemu (6.1.1)

Local 
migration

Host 1

/usr/bin/qemu-x86-6.1.0/usr/bin/qemu-x86-6.1.1
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(yum update)



Design and implementation
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Design challenges

• Keeping the machine ABI unchanged

• libvirt expects name and UUID of a VM to be unique

• Handling absolute path dependencies on UUID / name

• Modifying migration phases to work on the same host

• Modifying remote migration phases

• Resolving the correct domain object

• Avoiding the memory copy
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Bypassing memory copy
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libvirt

VM1

qemu 6.0.0

VM1

qemu 6.1.0

Local migration

Fetch fd for 
memory backend

fetch-backingfd
QMP command

Transfer memory 
backend fd
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Handling Qemu monitor and log files
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VM1 paths
(domain id 1)

Begin Phase (Source) Prepare Phase (Remote)

Finish Phase (Remote)

Perform Phase (Source)

Confirm Phase (Source)

VM1# paths 
(domain id 2)

/var/lib/libvirt/qemu/domain
-<VM1 UUID>/monitor.sock

Monitor socket path
/var/lib/libvirt/qemu/domain-

<domain-id-1>-<VM1 
UUID>/monitor.sock

Monitor socket path (new format)

/var/lib/libvirt/qemu/domain-
<domain-id-2>-<VM1# 
UUID>/monitor.sock

Symlink

Symlink
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Changes to migration flow
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Source hash table

Begin Phase (Source) Prepare Phase (Remote)

Finish Phase (Remote)

Perform Phase (Source)

Confirm Phase (Source)

Remote hash table
(New)

VM2 UUID

VM3 UUID

VM2

VM3

VM1#VM1 UUIDVM1VM1 UUID
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Results and future work
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Demo

yum update qemu-kvm 
Initiate qemu upgrade from

package manager

virsh migrate --local <domain id> Local migrate 
VM to new 
qemu binary
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Demo link

https://www.youtube.com/watch?v=f_u1daw39iY


Results – migration time
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VM1 – 2 vCPUs, 8 GB memory (nested)
VM2 – 4 vCPUs, 16 GB memory (nested)
VM3 – 6 vCPUs, 24 GB memory (nested)
VM4 – 8 vCPUs, 32 GB memory (nested)

Workload: High write-throughput
(n=x, m=y, l=z) = x threads dirtying y GB of memory at 

z GB/s



Results – downtime
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VM1 – 2 vCPUs, 8 GB memory (nested)
VM2 – 4 vCPUs, 16 GB memory (nested)
VM3 – 6 vCPUs, 24 GB memory (nested)
VM4 – 8 vCPUs, 32 GB memory (nested)

Workload: High write-throughput
(n=x, m=y, l=z) = x threads dirtying y GB of memory at 

z GB/s



Conclusion and Future Work
• We have enabled Qemu upgrade using local migration

• ~1s migration time

• < 50ms downtime

• Extending FD transfer framework to all types of devices

• Passthrough devices

• Continuing to upstream the patches
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Thank you
Contact

soham.ghosh@nutanix.com
prachatos.mitra@nutanix.com
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